以T为周期的连续函数f(x)证明:∫(a+T,a)f(x)dx=∫(T,0)f(x)dx,

我的证明方法是令x=t+a,当x=a时t=0,当x=a+T时,t=T,dx=dt,则原式可化为∫(T,0)f(t+a)dt=∫(T,0)f(x+a)dx,?????,这是... 我的证明方法是令x=t+a,当x=a时t=0,当x=a+T时,t=T,dx=dt,则
原式可化为
∫(T,0)f(t+a)dt=∫(T,0)f(x+a)dx,?????,这是怎么回事,要证的没证出来,反而得了一个这样的式子,这个式子正确吗,我的步骤都写对了啊,怎么会不正确呢,求解释这个式子,到底正不正确。。
大神快来回答啊
展开
 我来答
丘冷萱Ad
2013-04-15 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:4641万
展开全部
这个式子是对的,由于f(x)是以T为周期,因此在一个周期内函数所围的曲边梯形面积肯定是相同的所以你得出这个结论并不奇怪,只是这样可能证不出结论。

本题如果用换元法,应该这样证明
∫[a→a+T] f(x)dx
=∫[a→0] f(x)dx + ∫[0→T] f(x)dx + ∫[T→a+T] f(x)dx
然后通过换元证明第一项和第三项正好抵消。

下面提供一个更简单的证法:
将a看作变量,令g(a)=∫[a→a+T] f(x)dx
则:g'(a)=f(a+T)-f(a)=0,因此g(a)与a无关,则g(a)=g(0)
即∫(a→a+T)f(x)dx=∫(0→T)f(x)dx

【数学之美】团队为你解答。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式