超难数学平面几何题,超级难 , 高手来。
超难数学平面几何题,超级难,高手来。问题补充:如图AB切圆O于E切圆P于G。AC切圆O于F切圆P于H。BC切圆P于M。连心线OP垂直BC。圆O半径为1.5,圆P半径为4,...
超难数学平面几何题,超级难 , 高手来。
问题补充: 如图 AB切圆O于E 切圆P于G。AC切圆O于F 切圆P于H。BC切圆P于M。连心线OP垂直BC。圆O半径为1.5,圆P半径为4,OH=8。求三角形ABC的面积(半径和OH的长是我自己编的,具体数据不记得了,你们先按我给出的算吧,如果这数算起实在很难算,你们就自己编数字吧,我只需知道方法就行了) 展开
问题补充: 如图 AB切圆O于E 切圆P于G。AC切圆O于F 切圆P于H。BC切圆P于M。连心线OP垂直BC。圆O半径为1.5,圆P半径为4,OH=8。求三角形ABC的面积(半径和OH的长是我自己编的,具体数据不记得了,你们先按我给出的算吧,如果这数算起实在很难算,你们就自己编数字吧,我只需知道方法就行了) 展开
6个回答
展开全部
of和ph平行,已知ph和oh,那么就可以求出角oph,角oph=角aof,,,已知of和ofa(90度),可以求出af同样也可以求出fh,,,同理,,,角c那里也能求出ch。。。所以bc等于二倍ch;;;
ac=af+fh+ch,,三边知道就可以求面积了,既然数字不对,我也懒得算,给你方法
ac=af+fh+ch,,三边知道就可以求面积了,既然数字不对,我也懒得算,给你方法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
FH=√(64-2.25)=√61.75=√247/2
OF/PH=AF/(AF+FH)=1.5/8=3/16,3FH=13AF,AF=3FH/13=3√247/26
AO=√(OF^2+AF^2)=√(2.25+171/52)=6√26/13
OP=√[(8-1.5)^2+FH^2]=2√26
BC上的高=OP+AO+PH=6√26/13+2√26+8=32√26/13+8
BC的一半/BC上的高=OF/AO=1.5*13/(6√26)=√26/8,
BC的一半=BC上的高*√26/8=8+√26
所以三角形ABC的面积=BC的一半*BC上的高=(32√26/13+8)(8+√26)
OF/PH=AF/(AF+FH)=1.5/8=3/16,3FH=13AF,AF=3FH/13=3√247/26
AO=√(OF^2+AF^2)=√(2.25+171/52)=6√26/13
OP=√[(8-1.5)^2+FH^2]=2√26
BC上的高=OP+AO+PH=6√26/13+2√26+8=32√26/13+8
BC的一半/BC上的高=OF/AO=1.5*13/(6√26)=√26/8,
BC的一半=BC上的高*√26/8=8+√26
所以三角形ABC的面积=BC的一半*BC上的高=(32√26/13+8)(8+√26)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我来说一下解题步骤吧:
首先连接AO 交BC 点为M , AM 交圆P于N,连接PH
根据直角三角形POH列OP^2 =PH^2 + OH^2 可以求出OP长度,
三角形AOF与三角形APH相似 AO/AP = OF/PH ,AP=AO+OP, 求出AO
三角形OMC 与三角形OHP相似, MC/PH = OH/OM 求出MC
BC=2MC 又知道了AC=AO+OP+PM
可以求出三角形ABC的面积了
首先连接AO 交BC 点为M , AM 交圆P于N,连接PH
根据直角三角形POH列OP^2 =PH^2 + OH^2 可以求出OP长度,
三角形AOF与三角形APH相似 AO/AP = OF/PH ,AP=AO+OP, 求出AO
三角形OMC 与三角形OHP相似, MC/PH = OH/OM 求出MC
BC=2MC 又知道了AC=AO+OP+PM
可以求出三角形ABC的面积了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连OF ,PH,OA 易得A,O,P三点共线
易求得FH,OP的长
∴OF∶PH=AF∶AH ∴可得AF的长
根据正弦定理 AH∶sin(∠HOA)=AO∶sin(∠OHA)
根据诱导公式sin(∠HOA)=sin(∠POH)
所以可求得AO的长
∴可求得cos(∠OAF)
∴可求得AC的长
AP,AC均已知 所以三角形面积也易求了
易求得FH,OP的长
∴OF∶PH=AF∶AH ∴可得AF的长
根据正弦定理 AH∶sin(∠HOA)=AO∶sin(∠OHA)
根据诱导公式sin(∠HOA)=sin(∠POH)
所以可求得AO的长
∴可求得cos(∠OAF)
∴可求得AC的长
AP,AC均已知 所以三角形面积也易求了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询