这例题是无穷级数比较审敛法中做,求解释。题目如下:∑(n=1 ∞ )2n+1/ (n+1)(n+2)(n+3)

答案做法limn→∞2n+1/(n+1)(n+2)(n+3)=limn→∞2n+1/(n+1)(n+2)(n+3)/1/n²=limn→∞2n³+n&... 答案做法limn→∞2n+1/ (n+1)(n+2)(n+3)=limn→∞2n+1/ (n+1)(n+2)(n+3)
/ 1


=limn→∞2n³+n²

n³+6n²+11n+6=2由∑(n=1 ∞ )1/n²收敛知∑(n=1 ∞ )2n+1/ (n+1)(n+2)(n+3)收敛 有些乱 期待回答 非常感谢
还有一句说见到一般项为关于n的多项式的比值时,一般可采用相同级别的1/n∧x 来比较其收敛性。怎么判断相同级别?
展开
nsjiang1
2013-04-17 · TA获得超过1.3万个赞
知道大有可为答主
回答量:8735
采纳率:94%
帮助的人:3797万
展开全部
2n+1/ (n+1)(n+2)(n+3)
分子是1次,分母是3次,约掉后分母是2次,可用1/n^2进行比较(极限判别法),级数收敛
lim[(2n+1)/(n+1)(n+2)(n+3)]/(1/n^2)
=lim[n^2(2n+1)/(n+1)(n+2)(n+3)]
=2 (注意:分子分母为3次,极限为系数之比)
由于级数1/n^2,所以原级数收敛
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式