∫√(x^2-1)dx
=∫tant*secttantdt
=∫(sec^2t-1)*sectdt
=∫(sec^3t-sect)dt
=∫sec^3tdt-∫sectdt
=∫sectdtant-∫1/costdt
=secttant-∫tantdsect-∫cost/cos^2tdt
=secttant-∫tantdsect-∫1/(1-sin^2t)dsint
=secttant-∫tantdsect-1/2∫[1/(1-sint)+1/(1+sint)]dsint
=secttant-∫tantdsect+1/2ln[(1-sint)/(1+sint)]
移项得
∫tantdsect=1/2secttant+1/4ln[(1-sint)/(1+sint)]
然后再反代
你真行,你看看147个常用积分表,怎么可能没有这个公式呢?