在数列{an}中 a1=1当n>=2时,其前n项sn满足2SnSn-1=Sn-1–Sn
2个回答
展开全部
2SnS(n-1)=S(n-1)–Sn
1/Sn -1/S(n-1) =2
1/Sn -1/S1= 2(n-1)
1/Sn = 2n-1
Sn = 1/(2n-1) (1)
S(n-1) = 1/(2n-3) (2)
(1) -(2)
an = 1/(2n-1) - 1/(2n-3)
bn = Sn/(2n+1)
= 1/[(2n-1)(2n+1)]
= (1/2)[1/(2n-1) -1/(2n+1)]
Tn =b1+b2+..+bn
= (1/2)[ 1 - 1/(2n+1) ]
1/Sn -1/S(n-1) =2
1/Sn -1/S1= 2(n-1)
1/Sn = 2n-1
Sn = 1/(2n-1) (1)
S(n-1) = 1/(2n-3) (2)
(1) -(2)
an = 1/(2n-1) - 1/(2n-3)
bn = Sn/(2n+1)
= 1/[(2n-1)(2n+1)]
= (1/2)[1/(2n-1) -1/(2n+1)]
Tn =b1+b2+..+bn
= (1/2)[ 1 - 1/(2n+1) ]
展开全部
解:n≥2时a[n]=s[n]-s[n-1],将它代入an= 2Sn^2/2Sn-1
并化简,得1 /s[n]=1/s[n-1]+2 (n≥2)
上式表明 {1/s[n]}是以1/s[1]=1/a[1]=1 为首项,2为公差的等差数列
从而 1/s[n]=2n-1,s[n]=1/(2n-1) (n≥1)故n=1时,a[1]=1;
n≥2时,a[n]=s[n]-s[n-1]=1/(2n-1)-1/(2n-3)
=-2/[(2n-1)(2n-3)]
fn(x)=-xn+1=-xn+1,f'n(x)=nxn
bn=npn
设Tn=b1+b2+…+bn=p+2p2+3p3+…+npn (1)
当p=0时,Tn=0
p=1时,
Tn=1+2+…+n=-n(n+1)
pTn=p2+2p3+…+npn+1 (2)
(1)-(2) Tn-PTn=p+p2+…+pn-npn+1
∴Tn=(p+p2+…+pn-npn+1)/(1-p),(p≠0, p≠1
并化简,得1 /s[n]=1/s[n-1]+2 (n≥2)
上式表明 {1/s[n]}是以1/s[1]=1/a[1]=1 为首项,2为公差的等差数列
从而 1/s[n]=2n-1,s[n]=1/(2n-1) (n≥1)故n=1时,a[1]=1;
n≥2时,a[n]=s[n]-s[n-1]=1/(2n-1)-1/(2n-3)
=-2/[(2n-1)(2n-3)]
fn(x)=-xn+1=-xn+1,f'n(x)=nxn
bn=npn
设Tn=b1+b2+…+bn=p+2p2+3p3+…+npn (1)
当p=0时,Tn=0
p=1时,
Tn=1+2+…+n=-n(n+1)
pTn=p2+2p3+…+npn+1 (2)
(1)-(2) Tn-PTn=p+p2+…+pn-npn+1
∴Tn=(p+p2+…+pn-npn+1)/(1-p),(p≠0, p≠1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询