什么叫实数的连续性?
4个回答
展开全部
实数的连续性是说实数是紧密相连不能被割开。形象的说, 一刀砍到数轴上一定会砍到实数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-04-16
展开全部
实数的连续性,从几何角度理解,就是实数全体布满整个数轴而没有“空隙”。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
若实数不连续,则存在a、b是相邻的两个实数,则(a+b)/2也为实数,但它介于a、b之间,所以a、b不相邻。故实数连续。
若有理数不连续,则存在a、b是相邻的两个有理数,则(a+b)/2也为有理数,但它介于a、b之间,所以a、b不相邻。故有理数连续。
那为什么说有理数不连续?
--------------------------------------------------------
实数系的基本定理——实数系的连续性,有多种表达方式:dedkind
切割定理,确界存在定理,单调有界数列收敛定理,闭区间套定理,bolzano-weierstrass
定理,cauchy
收敛原理和cantor定理。这些定理是等价的,其中每一个都可以作为极限论的出发点,建立起整个极限理论。
确界定理:在实数系r内,非空的有上(下)界的数集必有上(下)确界存在。
有理数集合0
评论
0
0
加载更多
若有理数不连续,则存在a、b是相邻的两个有理数,则(a+b)/2也为有理数,但它介于a、b之间,所以a、b不相邻。故有理数连续。
那为什么说有理数不连续?
--------------------------------------------------------
实数系的基本定理——实数系的连续性,有多种表达方式:dedkind
切割定理,确界存在定理,单调有界数列收敛定理,闭区间套定理,bolzano-weierstrass
定理,cauchy
收敛原理和cantor定理。这些定理是等价的,其中每一个都可以作为极限论的出发点,建立起整个极限理论。
确界定理:在实数系r内,非空的有上(下)界的数集必有上(下)确界存在。
有理数集合0
评论
0
0
加载更多
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询