4、 试说明低温脆性的物理本质及其影响因素。
2个回答
2013-04-17
展开全部
低温脆性的物理本质:材料的屈服强度随温度下降而急剧增加。
当温度低于某一温度时,材料由韧性状态转变为脆性状态,冲击值或断面收缩率急剧下降,断口特征由纤维状转变为结晶状,断裂机理由微孔聚集性转变为穿晶解理型。这种现象被称为低温脆性。
影响材料脆韧转变的因素有:
1.晶体结构,对称性低的体心立方以及密排六方金属,合金转变温度高,材料脆性断裂趋势明显,塑性差;
2.化学成分,能够使材料硬度,强度提高的杂质或者合金元素都会引起材料塑性和韧性变差,材料脆性提高;
3.显微组织,显微组织包含以下几个方面的影响:晶粒大小,细化晶粒可以同时提高材料的强度和塑性,韧性。细化晶粒提高材料韧性原因为,细化晶粒可以使基体变形更加均匀,晶界增多可以有效的阻止裂纹的扩张,因塑性变形引起的位错的塞积因晶界面积很大也不会很大,可以防止裂纹的产生;金相组织;
4.温度的影响:温度影响晶体中存在的杂质原子的热激活扩散过程,定扎位错原子气团的形成会使得材料塑性变差。
5.加载速度的影响:提高加载速度如同降低材料的温度,使得材料塑性变差,脆化温度升高。
6.试样形状以及尺寸的影响
当温度低于某一温度时,材料由韧性状态转变为脆性状态,冲击值或断面收缩率急剧下降,断口特征由纤维状转变为结晶状,断裂机理由微孔聚集性转变为穿晶解理型。这种现象被称为低温脆性。
影响材料脆韧转变的因素有:
1.晶体结构,对称性低的体心立方以及密排六方金属,合金转变温度高,材料脆性断裂趋势明显,塑性差;
2.化学成分,能够使材料硬度,强度提高的杂质或者合金元素都会引起材料塑性和韧性变差,材料脆性提高;
3.显微组织,显微组织包含以下几个方面的影响:晶粒大小,细化晶粒可以同时提高材料的强度和塑性,韧性。细化晶粒提高材料韧性原因为,细化晶粒可以使基体变形更加均匀,晶界增多可以有效的阻止裂纹的扩张,因塑性变形引起的位错的塞积因晶界面积很大也不会很大,可以防止裂纹的产生;金相组织;
4.温度的影响:温度影响晶体中存在的杂质原子的热激活扩散过程,定扎位错原子气团的形成会使得材料塑性变差。
5.加载速度的影响:提高加载速度如同降低材料的温度,使得材料塑性变差,脆化温度升高。
6.试样形状以及尺寸的影响
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
物声科技2024
2024-10-28 广告
2024-10-28 广告
在力学试验过程监测中,北京物声科技有限公司采用高精度传感器与先进的数据采集系统,实时捕捉试验中的力学参数变化。通过实时监测,我们能确保试验数据的准确性和可靠性,及时发现并处理异常情况。我们的监测系统具有高度的稳定性和灵敏度,能够适用于多种复...
点击进入详情页
本回答由物声科技2024提供
2013-04-17
展开全部
物质存在热胀冷缩的现象。我们知道,物质是由分子组成,分子是由原子组成,原子是由原子核和电子构成。分子与分子之间存在间隙,当物质遇到低温时,电子的活跃程度变慢,轨道开始收缩,分子之间的间隙会开始减小,物质开始体积收缩,比重加大。而抵抗外力增强(因为密度增大)。正因为分子之间的间隙减小,变形的能力越来越弱。当物质抵抗外力强度增大,变形能力越来越弱时,就呈现出脆性(易折难弯)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询