一道高中数学函数题,实在想不出来,求学霸解答!!
已知函数f(x)=e^x+ax^2+bx。设函数f(x)在点(t,f(t))(0<t<1)处的切线为l,且与y轴相交于点Q若点Q的纵坐标恒小于1,求实数a的取值范围。...
已知函数f(x)=e^x+ax^2+bx。设函数f(x)在点(t,f(t))(0<t<1)处的切线为l,且与y轴相交于点Q若点Q的纵坐标恒小于1,求实数a的取值范围。
展开
展开全部
已知函数f(x)=e^x+ax²+bx。设函数f(x)在点(t,f(t))(0<t<1)处的切线为l,且与y轴相交于点Q若点Q的纵坐标恒小于1,求实数a的取值范围。
解:f'(x)=e^x+2ax+b;故f'(t)=e^t+2at+b;(0<t<1);
那么过(t,f(t))的切线方程为:y=(e^t+2at+b)(x-t)+e^t+at²+bt;
令x=0,得y=-t(e^t+2at+b)+e^t+at²+bt=(1-t)e^t-at²,即Q点的坐标为(0,(1-t)e^t-at²);
已知(1-t)e^t-at²<1,由此得a>[(1-t)e^t-1]/t²]...............(1);
设u=[(1-t)e^t-1]/t²;当0<t<1时:du/dt=[-(t²-2t+2)e^t+2]/t³={(e^t)[-(t-1)²-1]+2}/t³<0
即在0<t<1时u=[(1-t)e^t-1]/t²单调减,故应取a>u(0);但在区间(0,1]内,u(0)无定义,为此取u(0)=t→0limu=t→0lim{[(1-t)e^t-1]/t²}=t→0lim[-(e^t)/2]=-1/2;故为使不等式(1)恒成立,应取a>-1/2,这就是a的取值范围。
解:f'(x)=e^x+2ax+b;故f'(t)=e^t+2at+b;(0<t<1);
那么过(t,f(t))的切线方程为:y=(e^t+2at+b)(x-t)+e^t+at²+bt;
令x=0,得y=-t(e^t+2at+b)+e^t+at²+bt=(1-t)e^t-at²,即Q点的坐标为(0,(1-t)e^t-at²);
已知(1-t)e^t-at²<1,由此得a>[(1-t)e^t-1]/t²]...............(1);
设u=[(1-t)e^t-1]/t²;当0<t<1时:du/dt=[-(t²-2t+2)e^t+2]/t³={(e^t)[-(t-1)²-1]+2}/t³<0
即在0<t<1时u=[(1-t)e^t-1]/t²单调减,故应取a>u(0);但在区间(0,1]内,u(0)无定义,为此取u(0)=t→0limu=t→0lim{[(1-t)e^t-1]/t²}=t→0lim[-(e^t)/2]=-1/2;故为使不等式(1)恒成立,应取a>-1/2,这就是a的取值范围。
展开全部
The answer is a>=-1/2。
The equation for the tangent line l is
y-f(t)=f'(t)(x-t).
So the y-coordinate y_Q of Q is
f(t)-tf'(t)=e^t+at^2+bt-t(e^t+2at+b)=(1-t)e^t-at^2.
Since y_Q<1, we have
a>((1-t)e^t-1)/t^2. (1)
Now consider the function
g(t)=((1-t)e^t-1)/t^2,
which is exactly the right hand side of (1). We compute
g'(t)=-h(t)/t^3,
where
h(t)=e^t*t^2+2*e^t-2*e^t*t-2.
Since h(0)=0 and h'(t)=e^t*t^2>0, we derive g'(t)<0, i.e., g is decreasing in the interval (0,1).
Therefore, the maximal value of g(t) is g(0).
By L'Hôpital's rule, we can deduce
lim_{t \to 0}g(t)=-1/2. (2)
In view of (1) and (2), we find a>=-1/2. This completes the solution.
The equation for the tangent line l is
y-f(t)=f'(t)(x-t).
So the y-coordinate y_Q of Q is
f(t)-tf'(t)=e^t+at^2+bt-t(e^t+2at+b)=(1-t)e^t-at^2.
Since y_Q<1, we have
a>((1-t)e^t-1)/t^2. (1)
Now consider the function
g(t)=((1-t)e^t-1)/t^2,
which is exactly the right hand side of (1). We compute
g'(t)=-h(t)/t^3,
where
h(t)=e^t*t^2+2*e^t-2*e^t*t-2.
Since h(0)=0 and h'(t)=e^t*t^2>0, we derive g'(t)<0, i.e., g is decreasing in the interval (0,1).
Therefore, the maximal value of g(t) is g(0).
By L'Hôpital's rule, we can deduce
lim_{t \to 0}g(t)=-1/2. (2)
In view of (1) and (2), we find a>=-1/2. This completes the solution.
追问
第一次见到全英文的数学解答,太强悍了!
虽然没有采纳你的,但是还是非常感谢你O(∩_∩)O~
追答
a可以取-1/2,你采纳的是个错误答案,填空的话就是零分。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f'(x)=e^x+2ax+b
所以 l 的斜率 为 e^t+2at+b
同样点(t,f(t))和点Q(0,y)在 l 上,所以l的斜率为 (f(t)-y)/t=e^t/t+at+b-y/t
e^t/t+at+b-y/t=e^t+2at+b
y=e^t-t*e^t-at^2
y'=e^t-t*e^t-e^t-2at=-2at-t*e^t=-t(2a+e^t)
当a>-1/2是 2a+e^t >0 y' 恒小于0
所以t=0时 y最大
y=e^0-0*e^0-2a0^2=1 成立
当a<-e/2 时 2a+e^t<0 y' 恒大于 0
所以t=1时 y最大
y=e-e-a=-a>e/2>1 不成立
当-e/2<a<-1/2 时 2a+e^t=0 时 y最小,y在 t=0或者 t=1时最大
y0=1
y1=e-e-a=-a
要让y一直小于1则 y1要小于1
-a<1 a>-1
综上 a>-1时 Q纵坐标恒小于1
所以 l 的斜率 为 e^t+2at+b
同样点(t,f(t))和点Q(0,y)在 l 上,所以l的斜率为 (f(t)-y)/t=e^t/t+at+b-y/t
e^t/t+at+b-y/t=e^t+2at+b
y=e^t-t*e^t-at^2
y'=e^t-t*e^t-e^t-2at=-2at-t*e^t=-t(2a+e^t)
当a>-1/2是 2a+e^t >0 y' 恒小于0
所以t=0时 y最大
y=e^0-0*e^0-2a0^2=1 成立
当a<-e/2 时 2a+e^t<0 y' 恒大于 0
所以t=1时 y最大
y=e-e-a=-a>e/2>1 不成立
当-e/2<a<-1/2 时 2a+e^t=0 时 y最小,y在 t=0或者 t=1时最大
y0=1
y1=e-e-a=-a
要让y一直小于1则 y1要小于1
-a<1 a>-1
综上 a>-1时 Q纵坐标恒小于1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询