xy'-y-√(x^2+y^2)=0的通解
1个回答
展开全部
解:∵xy'-y-√(y²-x²)=0 ==>y'-y/x-√(y²/x²-1)=0
∴设y=xt,则y'=xt'+t
代入方程得xt'-√(t²-1)=0 ==>dt/√(t²-1)=dx/x
==>ln(t+√(t²-1))=ln│x│+ln│C│ (C是积分常数)
==>t+√(t²-1)=Cx
==>y/x+√(y²/x²-1)=Cx
==>y+√(y²-x²)=Cx²
故原方程的通解是y+√(y²-x²)=Cx² (C是积分常数)。
∴设y=xt,则y'=xt'+t
代入方程得xt'-√(t²-1)=0 ==>dt/√(t²-1)=dx/x
==>ln(t+√(t²-1))=ln│x│+ln│C│ (C是积分常数)
==>t+√(t²-1)=Cx
==>y/x+√(y²/x²-1)=Cx
==>y+√(y²-x²)=Cx²
故原方程的通解是y+√(y²-x²)=Cx² (C是积分常数)。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |