sha1 的hmac算法c++的 今晚急求!!!!! 10
展开全部
HMACSHA1.h文件
#ifndef _IPSEC_SHA1_H_
#define _IPSEC_SHA1_H_
typedef unsigned long__u32;
typedef char__u8;
typedef struct
{
__u32 state[5];
__u32 count[2];
__u8 buffer[64];
} SHA1_CTX;
#if defined(rol)
#undef rol
#endif
#define SHA1HANDSOFF
#define __LITTLE_ENDIAN
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
/* blk0() and blk() perform the initial expand. */
/* I got the idea of expanding during the round function from SSLeay */
#ifdef __LITTLE_ENDIAN
#define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
|(rol(block->l[i],8)&0x00FF00FF))
#else
#define blk0(i) block->l[i]
#endif
#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
^block->l[(i+2)&15]^block->l[i&15],1))
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
/* Hash a single 512-bit block. This is the core of the algorithm. */
void SHA1Transform(__u32 state[5], __u8 buffer[64]);
void SHA1Init(SHA1_CTX *context);
void SHA1Update(SHA1_CTX *context, char *data, __u32 len);
void SHA1Final( char digest[20], SHA1_CTX *context);
//void hmac_sha1(unsigned char *to_mac,unsigned int to_mac_length, unsigned char *key,unsigned int key_length, unsigned char *out_mac);
void SHA1_Encode
(
char* k, /* secret key */
int lk, /* length of the key in bytes */
char* d, /* data */
int ld, /* length of data in bytes */
char* out, /* output buffer, at least "t" bytes */
int t
);
#endif /* _IPSEC_SHA1_H_ */
HMACSHA1.cpp 文件
#include"stdafx.h"
#include "HMACSHA1.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <memory.h>
#ifndef SHA_DIGESTSIZE
#define SHA_DIGESTSIZE 20
#endif
#ifndef SHA_BLOCKSIZE
#define SHA_BLOCKSIZE 64
#endif
/* Hash a single 512-bit block. This is the core of the algorithm. */
void SHA1Transform(__u32 state[5], __u8 buffer[64])
{
__u32 a, b, c, d, e;
typedef union {
unsigned char c[64];
__u32 l[16];
} CHAR64LONG16;
CHAR64LONG16* block;
#ifdef SHA1HANDSOFF
static unsigned char workspace[64];
block = (CHAR64LONG16*)workspace;
// NdisMoveMemory(block, buffer, 64);
memcpy(block, buffer, 64);
#else
block = (CHAR64LONG16*)buffer;
#endif
/* Copy context->state[] to working vars */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
/* Wipe variables */
a = b = c = d = e = 0;
}
/* SHA1Init - Initialize new context */
void SHA1Init(SHA1_CTX* context)
{
/* SHA1 initialization constants */
context->state[0] = 0x67452301;
context->state[1] = 0xEFCDAB89;
context->state[2] = 0x98BADCFE;
context->state[3] = 0x10325476;
context->state[4] = 0xC3D2E1F0;
context->count[0] = context->count[1] = 0;
}
/* Run your data through this. */
void SHA1Update(SHA1_CTX* context, char* data, __u32 len)
{
__u32 i, j;
j = context->count[0];
if ((context->count[0] += len << 3) < j)
context->count[1]++;
context->count[1] += (len>>29);
j = (j >> 3) & 63;
if ((j + len) > 63) {
// NdisMoveMemory(&context->buffer[j], data, (i = 64-j));
memcpy(&context->buffer[j], data, (i = 64-j));
SHA1Transform(context->state, context->buffer);
for ( ; i + 63 < len; i += 64) {
SHA1Transform(context->state, &data[i]);
}
j = 0;
}
else i = 0;
// NdisMoveMemory(&context->buffer[j], &data[i], len - i);
memcpy(&context->buffer[j], &data[i], len - i);
}
/* Add padding and return the message digest. */
void SHA1Final( char digest[20], SHA1_CTX* context)
{
__u32 i, j; char finalcount[8];
for (i = 0; i < 8; i++) {
finalcount[i] = ( char)((context->count[(i >= 4 ? 0 : 1)]
>> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
}
SHA1Update(context, ( char *)"\200", 1);
while ((context->count[0] & 504) != 448) {
SHA1Update(context, ( char *)"\0", 1);
}
SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
for (i = 0; i < 20; i++) {
digest[i] = ( char)
((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
}
/* Wipe variables */
i = j = 0;
// NdisZeroMemory(context->buffer, 64);
// NdisZeroMemory(context->state, 20);
// NdisZeroMemory(context->count, 8);
// NdisZeroMemory(&finalcount, 8);
memset(context->buffer, 0x00, 64);
memset(context->state, 0x00, 20);
memset(context->count, 0x00, 8);
memset(&finalcount, 0x00, 8);
#ifdef SHA1HANDSOFF /* make SHA1Transform overwrite its own static vars */
SHA1Transform(context->state, context->buffer);
#endif
}
void truncate
(
char* d1, /* data to be truncated */
char* d2, /* truncated data */
int len /* length in bytes to keep */
)
{
int i ;
for (i = 0 ; i < len ; i++) d2[i] = d1[i];
}
/* Function to compute the digest */
void SHA1_Encode
(
char* k, /* secret key */
int lk, /* length of the key in bytes */
char* d, /* data */
int ld, /* length of data in bytes */
char* out, /* output buffer, at least "t" bytes */
int t
)
{
SHA1_CTX ictx, octx ;
char isha[SHA_DIGESTSIZE], osha[SHA_DIGESTSIZE] ;
char key[SHA_DIGESTSIZE] ;
char buf[SHA_BLOCKSIZE] ;
int i ;
if (lk > SHA_BLOCKSIZE) {
SHA1_CTX tctx ;
SHA1Init(&tctx) ;
SHA1Update(&tctx, k, lk) ;
SHA1Final(key, &tctx) ;
k = key ;
lk = SHA_DIGESTSIZE ;
}
/**** Inner Digest ****/
SHA1Init(&ictx) ;
/* Pad the key for inner digest */
for (i = 0 ; i < lk ; ++i) buf[i] = k[i] ^ 0x36 ;
for (i = lk ; i < SHA_BLOCKSIZE ; ++i) buf[i] = 0x36 ;
SHA1Update(&ictx, buf, SHA_BLOCKSIZE) ;
SHA1Update(&ictx, d, ld) ;
SHA1Final(isha, &ictx) ;
/**** Outter Digest ****/
SHA1Init(&octx) ;
/* Pad the key for outter digest */
for (i = 0 ; i < lk ; ++i) buf[i] = k[i] ^ 0x5C ;
for (i = lk ; i < SHA_BLOCKSIZE ; ++i) buf[i] = 0x5C ;
SHA1Update(&octx, buf, SHA_BLOCKSIZE) ;
SHA1Update(&octx, isha, SHA_DIGESTSIZE) ;
SHA1Final(osha, &octx) ;
/* truncate and print the results */
t = t > SHA_DIGESTSIZE ? SHA_DIGESTSIZE : t ;
truncate(osha, out, t) ;
}
//int main()
//{
//char k[1024],d[1024],out[1024];
//int lk,ld,t;
//strcpy(d,"what do ya want for nothing?");
//strcpy(k,"Jefe");
//lk=strlen(k);
//ld=strlen(d);
//printf("lk=%d\n",lk);
//printf("ld=%d\n",ld);
//t=20;
//hmac_sha(k,lk,d,ld,out,t);
//
//return 0;
//}
调用方法:
SHA_RESULTSIZE =20;
char paramSrc[1024]="aaa";
char keySrc[100]="bbbb";
char sha1Str[SHA_RESULTSIZE] = "";
SHA1_Encode(keySrc,strlen(keySrc),paramSrc,strlen(paramSrc),sha1Str,sizeof(sha1Str));
sha1Str就是最终的值。
#ifndef _IPSEC_SHA1_H_
#define _IPSEC_SHA1_H_
typedef unsigned long__u32;
typedef char__u8;
typedef struct
{
__u32 state[5];
__u32 count[2];
__u8 buffer[64];
} SHA1_CTX;
#if defined(rol)
#undef rol
#endif
#define SHA1HANDSOFF
#define __LITTLE_ENDIAN
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
/* blk0() and blk() perform the initial expand. */
/* I got the idea of expanding during the round function from SSLeay */
#ifdef __LITTLE_ENDIAN
#define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
|(rol(block->l[i],8)&0x00FF00FF))
#else
#define blk0(i) block->l[i]
#endif
#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
^block->l[(i+2)&15]^block->l[i&15],1))
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
/* Hash a single 512-bit block. This is the core of the algorithm. */
void SHA1Transform(__u32 state[5], __u8 buffer[64]);
void SHA1Init(SHA1_CTX *context);
void SHA1Update(SHA1_CTX *context, char *data, __u32 len);
void SHA1Final( char digest[20], SHA1_CTX *context);
//void hmac_sha1(unsigned char *to_mac,unsigned int to_mac_length, unsigned char *key,unsigned int key_length, unsigned char *out_mac);
void SHA1_Encode
(
char* k, /* secret key */
int lk, /* length of the key in bytes */
char* d, /* data */
int ld, /* length of data in bytes */
char* out, /* output buffer, at least "t" bytes */
int t
);
#endif /* _IPSEC_SHA1_H_ */
HMACSHA1.cpp 文件
#include"stdafx.h"
#include "HMACSHA1.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <memory.h>
#ifndef SHA_DIGESTSIZE
#define SHA_DIGESTSIZE 20
#endif
#ifndef SHA_BLOCKSIZE
#define SHA_BLOCKSIZE 64
#endif
/* Hash a single 512-bit block. This is the core of the algorithm. */
void SHA1Transform(__u32 state[5], __u8 buffer[64])
{
__u32 a, b, c, d, e;
typedef union {
unsigned char c[64];
__u32 l[16];
} CHAR64LONG16;
CHAR64LONG16* block;
#ifdef SHA1HANDSOFF
static unsigned char workspace[64];
block = (CHAR64LONG16*)workspace;
// NdisMoveMemory(block, buffer, 64);
memcpy(block, buffer, 64);
#else
block = (CHAR64LONG16*)buffer;
#endif
/* Copy context->state[] to working vars */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
/* Wipe variables */
a = b = c = d = e = 0;
}
/* SHA1Init - Initialize new context */
void SHA1Init(SHA1_CTX* context)
{
/* SHA1 initialization constants */
context->state[0] = 0x67452301;
context->state[1] = 0xEFCDAB89;
context->state[2] = 0x98BADCFE;
context->state[3] = 0x10325476;
context->state[4] = 0xC3D2E1F0;
context->count[0] = context->count[1] = 0;
}
/* Run your data through this. */
void SHA1Update(SHA1_CTX* context, char* data, __u32 len)
{
__u32 i, j;
j = context->count[0];
if ((context->count[0] += len << 3) < j)
context->count[1]++;
context->count[1] += (len>>29);
j = (j >> 3) & 63;
if ((j + len) > 63) {
// NdisMoveMemory(&context->buffer[j], data, (i = 64-j));
memcpy(&context->buffer[j], data, (i = 64-j));
SHA1Transform(context->state, context->buffer);
for ( ; i + 63 < len; i += 64) {
SHA1Transform(context->state, &data[i]);
}
j = 0;
}
else i = 0;
// NdisMoveMemory(&context->buffer[j], &data[i], len - i);
memcpy(&context->buffer[j], &data[i], len - i);
}
/* Add padding and return the message digest. */
void SHA1Final( char digest[20], SHA1_CTX* context)
{
__u32 i, j; char finalcount[8];
for (i = 0; i < 8; i++) {
finalcount[i] = ( char)((context->count[(i >= 4 ? 0 : 1)]
>> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
}
SHA1Update(context, ( char *)"\200", 1);
while ((context->count[0] & 504) != 448) {
SHA1Update(context, ( char *)"\0", 1);
}
SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
for (i = 0; i < 20; i++) {
digest[i] = ( char)
((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
}
/* Wipe variables */
i = j = 0;
// NdisZeroMemory(context->buffer, 64);
// NdisZeroMemory(context->state, 20);
// NdisZeroMemory(context->count, 8);
// NdisZeroMemory(&finalcount, 8);
memset(context->buffer, 0x00, 64);
memset(context->state, 0x00, 20);
memset(context->count, 0x00, 8);
memset(&finalcount, 0x00, 8);
#ifdef SHA1HANDSOFF /* make SHA1Transform overwrite its own static vars */
SHA1Transform(context->state, context->buffer);
#endif
}
void truncate
(
char* d1, /* data to be truncated */
char* d2, /* truncated data */
int len /* length in bytes to keep */
)
{
int i ;
for (i = 0 ; i < len ; i++) d2[i] = d1[i];
}
/* Function to compute the digest */
void SHA1_Encode
(
char* k, /* secret key */
int lk, /* length of the key in bytes */
char* d, /* data */
int ld, /* length of data in bytes */
char* out, /* output buffer, at least "t" bytes */
int t
)
{
SHA1_CTX ictx, octx ;
char isha[SHA_DIGESTSIZE], osha[SHA_DIGESTSIZE] ;
char key[SHA_DIGESTSIZE] ;
char buf[SHA_BLOCKSIZE] ;
int i ;
if (lk > SHA_BLOCKSIZE) {
SHA1_CTX tctx ;
SHA1Init(&tctx) ;
SHA1Update(&tctx, k, lk) ;
SHA1Final(key, &tctx) ;
k = key ;
lk = SHA_DIGESTSIZE ;
}
/**** Inner Digest ****/
SHA1Init(&ictx) ;
/* Pad the key for inner digest */
for (i = 0 ; i < lk ; ++i) buf[i] = k[i] ^ 0x36 ;
for (i = lk ; i < SHA_BLOCKSIZE ; ++i) buf[i] = 0x36 ;
SHA1Update(&ictx, buf, SHA_BLOCKSIZE) ;
SHA1Update(&ictx, d, ld) ;
SHA1Final(isha, &ictx) ;
/**** Outter Digest ****/
SHA1Init(&octx) ;
/* Pad the key for outter digest */
for (i = 0 ; i < lk ; ++i) buf[i] = k[i] ^ 0x5C ;
for (i = lk ; i < SHA_BLOCKSIZE ; ++i) buf[i] = 0x5C ;
SHA1Update(&octx, buf, SHA_BLOCKSIZE) ;
SHA1Update(&octx, isha, SHA_DIGESTSIZE) ;
SHA1Final(osha, &octx) ;
/* truncate and print the results */
t = t > SHA_DIGESTSIZE ? SHA_DIGESTSIZE : t ;
truncate(osha, out, t) ;
}
//int main()
//{
//char k[1024],d[1024],out[1024];
//int lk,ld,t;
//strcpy(d,"what do ya want for nothing?");
//strcpy(k,"Jefe");
//lk=strlen(k);
//ld=strlen(d);
//printf("lk=%d\n",lk);
//printf("ld=%d\n",ld);
//t=20;
//hmac_sha(k,lk,d,ld,out,t);
//
//return 0;
//}
调用方法:
SHA_RESULTSIZE =20;
char paramSrc[1024]="aaa";
char keySrc[100]="bbbb";
char sha1Str[SHA_RESULTSIZE] = "";
SHA1_Encode(keySrc,strlen(keySrc),paramSrc,strlen(paramSrc),sha1Str,sizeof(sha1Str));
sha1Str就是最终的值。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询