人脸识别的算法

人脸识技术中被广泛采用的区域特征分析算法,它融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立... 人脸识技术中被广泛采用的区域特征分析算法,它融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,即人脸特征模板。利用已建成的人脸特征模板与被测者的人的面像进行特征分析,根据分析的结果来给出一个相似值。通过这个值即可确定是否为同一人。

在这算法中,怎么求出这个相似值,我想要有个比较详细的算法求解过程,请高手帮帮忙,最好能带解释,谢谢了!
展开
 我来答
像素数据 2023-07-25
展开全部
人脸识别软件当然选像素数据,像素数据专业18年,成熟的应用解决方案,稳定的技术基础和国内众多应用案例人脸识别,国内知名人脸识别厂商,完美的技术,成本低,效率高的人脸识别应用和系统,公司利用自主研发的核心技术为各行业用户量身定制了全方位的解决方案,在人脸识别、人像采集、检测和处理方面成果丰硕,成功应用于公安、交通、金融、外事、外交以及教育等领域,取得了良好的社会及经济效益。
peipeiecust
2008-05-20 · TA获得超过149个赞
知道答主
回答量:97
采纳率:0%
帮助的人:52.5万
展开全部
1、人体面貌识别技术的内容
人体面貌识别技术包含三个部分:
(1) 人体面貌检测
面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:
①参考模板法
首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;
②人脸规则法
由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;
③样品学习法
这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;
④肤色模型法
这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。
⑤特征子脸法
这种方法是将所有面像集合视为一个面像子空间,并基于检测样品与其在子孔间的投影之间的距离判断是否存在面像。
值得提出的是,上述5种方法在实际检测系统中也可综合采用。
(2)人体面貌跟踪
面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。
此外,利用肤色模型跟踪也不失为一种简单而有效的手段。
(3)人体面貌比对
面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出最佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。目前主要采用特征向量与面纹模板两种描述方法:
①特征向量法
该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。
②面纹模板法
该方法是在库中存贮若干标准面像模板或面像器官模板,在进行比对时,将采样面像所有象素与库中所有模板采用归一化相关量度量进行匹配。
此外,还有采用模式识别的自相关网络或特征与模板相结合的方法。
人体面貌识别技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。一般要求判断时间低于1秒。
2、人体面貌的识别过程
一般分三步:
(1)首先建立人体面貌的面像档案。即用摄像机采集单位人员的人体面貌的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码贮存起来。
(2)获取当前的人体面像
即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。
(3)用当前的面纹编码与档案库存的比对
即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的“面纹编码”方式是根据人体面貌脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中精确地辩认出某个人。
人体面貌的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。
像素数据
2023-07-25 广告
人脸识别需要积累采集到的大量人脸图像相关的数据,用来验证算法,不断提高识别精确性,这些数据诸如A Neural Network Face Recognition Asignment(神经网络人脸识别数据)、orl人脸数据库、麻省理工学院生物... 点击进入详情页
本回答由像素数据提供
wujiehaode
2008-05-20 · TA获得超过308个赞
知道小有建树答主
回答量:758
采纳率:0%
帮助的人:482万
展开全部
component analysis,Hidden Markov ModeI(HMM) l 引言近十年来,人脸识别的研究有了很大进展。与指纹、语音等其他人体生物特征相比,人脸识别更加直接、友好,在身份识别,视频检索,安伞舱控等方面有着广泛的应用,是当前模式识别和人工智能领域的一个研究热点【”特征提取在人脸识别中的作用至关重要,如何根据人的视觉机制提取有效的特征一直是模式识别领域的研究热点。早期的研究中有人用Gabor小波对大脑皮层的视觉感知细胞的性态进行建模‘,即可以把每个视觉细胞看作一个具有一定方向和尺度的Gabor滤波器。当外界刺激(例如图像信号)输入到视觉细2004.08.09收到.2005.01.1】改回中国科学院科技创新基金资助课题胞时,视觉细胞的输出响应就是图像与Gabor滤波器的卷积,而这个输出信号经大脑的进一步处理后形成最后的认知映像。

http://www.jdl.ac.cn/project/faceId/res-identify.htm

http://www.cqvip.com/qk/91130A/200603/21450873.html
(这个网站里面有很多这方面的参考文献)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式