求分式(3x²+6x+5)/【(1/2)²+x+1】的最小值

 我来答
Qing果果
2013-04-17 · TA获得超过1.6万个赞
知道大有可为答主
回答量:3191
采纳率:66%
帮助的人:1743万
展开全部
(3x²+6x+5)/【(1/2)x²+x+1】
=2(3x²+6x+5)/【x²+2x+2】
=2(3x²+6x+6-1)/【x²+2x+2】
=6-2/【x²+2x+2】
=6-2/【(x+1)²+1】
因为(x+1)²+1的最小值是1
所以2/【(x+1)²+1】的最大值是2
所以6-2/【(x+1)²+1】的最小值是6-2=4
即原分式的最小值是4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式