证明不等式 sinx>x-(x^2/2) 求过程 (x大于等于0). 求过程 谢谢
展开全部
解答:
利用导数方法(条件有误,是x大于0)
构造函数f(x)=sinx-x+x²/2
则 f(0)=0
f'(x)=cosx-1+x=g(x)
则g'(x)=-sinx+1≥0恒成立
∴ g(x)在(0,+∞)上是增函数
∴ g(x)>g(0)=cos0-1+0=0
即f'(x)>0在(0,+∞)上恒成立
∴ x>0时,f(x)>f(0)=0
即 sinx-x+x²/2>0
即sinx>x-x²/2
利用导数方法(条件有误,是x大于0)
构造函数f(x)=sinx-x+x²/2
则 f(0)=0
f'(x)=cosx-1+x=g(x)
则g'(x)=-sinx+1≥0恒成立
∴ g(x)在(0,+∞)上是增函数
∴ g(x)>g(0)=cos0-1+0=0
即f'(x)>0在(0,+∞)上恒成立
∴ x>0时,f(x)>f(0)=0
即 sinx-x+x²/2>0
即sinx>x-x²/2
更多追问追答
追问
= = 条件没错 其实我也是想知道等于零的时候的情况怎么办的 答案上好像说是什么独立的点什么的
追答
不可能啊,
x=0时,两边都是0啊。是相等的。
展开全部
这里用到了严格单调性的定理:
令F(x)=sinx-x+x²/2
F'(x)=cosx-1+x
则F''(x)=-sinx+1≥0
所以,F'(x)=cosx-1+x在(0,∞)严格单调递增(因为F''(x)仅在个别独立的点F''(x)=0,不存在一小段区间使得F''(x)=0)
又F'(0)=cosx-1=0
所以X>0时,F'(x)=cosx-1+x>0恒成立
所以F(x)=sinx-x+x²/2在(0,∞)严格单调递增(仅在孤立的点导数为0)
又F(0)=sinx-x+x²/2=0
所以X>0时,F(x)=sinx-x+x²/2>0恒成立
而X=0时,F(x)=sinx-x+x²/2=0
所以:sinx>x-x²/2,x>0时;
sinx=x-x²/2,x=0时
令F(x)=sinx-x+x²/2
F'(x)=cosx-1+x
则F''(x)=-sinx+1≥0
所以,F'(x)=cosx-1+x在(0,∞)严格单调递增(因为F''(x)仅在个别独立的点F''(x)=0,不存在一小段区间使得F''(x)=0)
又F'(0)=cosx-1=0
所以X>0时,F'(x)=cosx-1+x>0恒成立
所以F(x)=sinx-x+x²/2在(0,∞)严格单调递增(仅在孤立的点导数为0)
又F(0)=sinx-x+x²/2=0
所以X>0时,F(x)=sinx-x+x²/2>0恒成立
而X=0时,F(x)=sinx-x+x²/2=0
所以:sinx>x-x²/2,x>0时;
sinx=x-x²/2,x=0时
更多追问追答
追问
能不能说下什么是严格单调性 谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sin什么意思?
追问
正弦
追答
.........好吧超出我的范围了~~~~~~~~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询