证明:1+1=2
展开全部
1+1=2是可以证明的:
证明1+1=2用到歌德巴赫猜想:
【歌德巴赫猜想】
这个问题是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想(Goldbach Conjecture)。
今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。
从关于偶数的哥德巴赫猜想,可推出:
任一大于7的奇数都可写成三个质数之和
的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。
若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。弱哥德巴赫猜想尚未完全解决,但1937年时前苏联数学家维诺格拉多夫已经证明充分大的奇质数都能写成三个质数的和,也称为“哥德巴赫-维诺格拉朵夫定理”或“三素数定理”,数学家认为弱哥德巴赫猜想已基本解决。研究途径 研究偶数的哥德巴赫猜想的四个途径。这四个途径分别是:殆素数,例外集合,小变量的三素数定理,以及几乎哥德巴赫问题。途径一:殆素数 殆素数就是素因子个数不多的正整数。现设N是偶数,虽然现在不能证明N是两个素数之和,但是可以证明它能够写成两个殆素数的和,即N=A+B,其中A和B的素因子个数都不太多,譬如说素因子个数不超过10。现在用“a+b”来表示如下命题:每个大偶数N都可表为A+B,其中A和B的素因子个数分别不超过a和b。显然,哥德巴赫猜想就可以写成"1+1"。在这一方向上的进展都是用所谓的筛法得到的。
证明1+1=2用到皮亚诺公理:
【皮亚诺公理】
皮亚诺(Peano,1858—1932)系意大利数学家,他提出五条自然数的性质,通常把这五条性质叫做自然数的皮亚诺公理。
(1)“1”是自然数;
(2)每一个确定的自然数a,都有一个确定的后继数a′,a′也是自然数(一个数的后继数就是紧接在这个数后面的数,例如,1的后继数是2,2的后继数是3等等);
(3)如果b、c都是自然数a的后继数,那么b=c;
(4)1不是任何自然数的后继数;
(5)任意关于自然数的命题,如果证明了它对自然数1是对的,又假定它对自然数n为真时,可以证明它对n′也真,那么,命题对所有自然数都真。
证明:
1+1的后继数是1的后继数的后继数,既是3
2的后继数是3
根据皮亚诺公理(4)
可得:1+1=2
有谁能用几何证明?
本人其实对歌德巴赫猜想更感兴趣:
求证任何一个大于2的偶数都可以用两个素数(也叫质数)之和来表示,也可以用N=P1+P2来表示,N代表一个大于2的偶数,P1、P2各代表一个质数.
例如:4=2+2
6=3+3
8=3+5
10=3+7 10=5+5
12=5+7
14=3+11 14=7+7
16=3+13 16=5+11
质数:只能被1和它本身整除的数就叫质数,如2、3、5、7、11、13等。
再说一下1+1的概念:
由于一下子求证N=P1+P2很难,于是数学家们想到了一个方法,将其中的P1分解成P1*P2*P3,P2也分解成P4*P5*P6,这样上面的式子就成了N=P1*P2*P3+P4*P5*P6,这个式子就是3+3,以此类推,N=P1*P2+P3*P4*P5就是2+3
,1+1其实就是N=P1+P2,我国和国外的数学家们先后证明了9+9到1+3,陈景润证明了1+2,但是至今为止,仍没人能够证明那个看似简单,却异乎寻常的1+1.
也许我更希望有人能证明出1+1≠2,那么整个世界将陷入绝对混乱之中。
证明1+1=2用到歌德巴赫猜想:
【歌德巴赫猜想】
这个问题是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想(Goldbach Conjecture)。
今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。
从关于偶数的哥德巴赫猜想,可推出:
任一大于7的奇数都可写成三个质数之和
的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。
若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。弱哥德巴赫猜想尚未完全解决,但1937年时前苏联数学家维诺格拉多夫已经证明充分大的奇质数都能写成三个质数的和,也称为“哥德巴赫-维诺格拉朵夫定理”或“三素数定理”,数学家认为弱哥德巴赫猜想已基本解决。研究途径 研究偶数的哥德巴赫猜想的四个途径。这四个途径分别是:殆素数,例外集合,小变量的三素数定理,以及几乎哥德巴赫问题。途径一:殆素数 殆素数就是素因子个数不多的正整数。现设N是偶数,虽然现在不能证明N是两个素数之和,但是可以证明它能够写成两个殆素数的和,即N=A+B,其中A和B的素因子个数都不太多,譬如说素因子个数不超过10。现在用“a+b”来表示如下命题:每个大偶数N都可表为A+B,其中A和B的素因子个数分别不超过a和b。显然,哥德巴赫猜想就可以写成"1+1"。在这一方向上的进展都是用所谓的筛法得到的。
证明1+1=2用到皮亚诺公理:
【皮亚诺公理】
皮亚诺(Peano,1858—1932)系意大利数学家,他提出五条自然数的性质,通常把这五条性质叫做自然数的皮亚诺公理。
(1)“1”是自然数;
(2)每一个确定的自然数a,都有一个确定的后继数a′,a′也是自然数(一个数的后继数就是紧接在这个数后面的数,例如,1的后继数是2,2的后继数是3等等);
(3)如果b、c都是自然数a的后继数,那么b=c;
(4)1不是任何自然数的后继数;
(5)任意关于自然数的命题,如果证明了它对自然数1是对的,又假定它对自然数n为真时,可以证明它对n′也真,那么,命题对所有自然数都真。
证明:
1+1的后继数是1的后继数的后继数,既是3
2的后继数是3
根据皮亚诺公理(4)
可得:1+1=2
有谁能用几何证明?
本人其实对歌德巴赫猜想更感兴趣:
求证任何一个大于2的偶数都可以用两个素数(也叫质数)之和来表示,也可以用N=P1+P2来表示,N代表一个大于2的偶数,P1、P2各代表一个质数.
例如:4=2+2
6=3+3
8=3+5
10=3+7 10=5+5
12=5+7
14=3+11 14=7+7
16=3+13 16=5+11
质数:只能被1和它本身整除的数就叫质数,如2、3、5、7、11、13等。
再说一下1+1的概念:
由于一下子求证N=P1+P2很难,于是数学家们想到了一个方法,将其中的P1分解成P1*P2*P3,P2也分解成P4*P5*P6,这样上面的式子就成了N=P1*P2*P3+P4*P5*P6,这个式子就是3+3,以此类推,N=P1*P2+P3*P4*P5就是2+3
,1+1其实就是N=P1+P2,我国和国外的数学家们先后证明了9+9到1+3,陈景润证明了1+2,但是至今为止,仍没人能够证明那个看似简单,却异乎寻常的1+1.
也许我更希望有人能证明出1+1≠2,那么整个世界将陷入绝对混乱之中。
追问
你想赚采纳率吗,想赚咱们互相提问
追答
我也找你提问!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询