空间直线与平面 证明公理3的推论3

如题完整规范证明... 如题 完整规范证明 展开
caiyuqixp
2013-05-26
知道答主
回答量:20
采纳率:0%
帮助的人:18.9万
展开全部
公理3的内容是:经过不在同一直线上的三个点,有且只有一个平面。

公理3的推论3是:两条平行的直线确定一个平面。

所有的推论是由相应的公理证明的。

证明:

设两直线l和m互相平行,取l上两个点A和B,取m上两个点C和D,

显然任意三点都不共线,否则l和m将会相交,与两直线平行矛盾,

根据公理3,知道

过A、C、D有且只有一个平面,设为平面α;过B、C、D有且只有一个平面 ,设为平面β;

假设两平面α和β不重合,则B在α外,

在同一平面内,永不相交的两条直线叫平行线,

所以在α内过A且与CD平行的直线有且只有一条,不妨设为AE,

此时,AB和AE都与CD平行,

与“过直线外一点与此直线平行的直线有且只有一条"矛盾,

所以D也在α内,此时α和β重合,

即α和β是同一个平面,

即两条平行的直线确定一个平面。
匿名用户
2013-04-18
展开全部
1.平面通常用一个平行四边形来表示.
平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.
在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:
a) A∈l—点A在直线l上;A α—点A不在平面α内;
b) l α—直线l在平面α内;
c) a α—直线a不在平面α内;
d) l∩m=A—直线l与直线m相交于A点;
e) α∩l=A—平面α与直线l交于A点;
f) α∩β=l—平面α与平面β相交于直线l.
2.平面的基本性质
公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.
公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.
公理3 经过不在同一直线上的三个点,有且只有一个平面.
根据上面的公理,可得以下推论.
推论1 经过一条直线和这条直线外一点,有且只有一个平面.
推论2 经过两条相交直线,有且只有一个平面.
推论3 经过两条平行直线,有且只有一个平面.
3.空间线面的位置关系
共面 平行—没有公共点
(1)直线与直线 相交—有且只有一个公共点
异面(既不平行,又不相交)
直线在平面内—有无数个公共点
(2)直线和平面 直线不在平面内 平行—没有公共点
(直线在平面外) 相交—有且只有一公共点
(3)平面与平面 相交—有一条公共直线(无数个公共点)
平行—没有公共点
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式