大于号和小于号怎么区别
2、A>B是A大于B
3、A<B是A小于B
4、对于任意两实数a,b,都可在同一数轴上找到其对应点A,B若点A在点B右侧,则a>b
5、对于任意两实数a、b,都可在同一数轴上找到其对应点A、B,若点A在点B左侧,则a<b。
扩展资料:
大于号">"
解释:当一个数值比另一个数值大时使用大于号">".
其几何意义可以这样解释:
对于任意两实数a,b,都可在同一数轴上找到其对应点A,B
若点A在点B右侧,则a>b
举例:a=3,b=1,a比b大。即a>b (a大于b)
小于号"<"
解释:当一个数值比另一个数值小时使用小于号"<"。
举例:a=3,b=5,a比b小。即a<b (a小于b)。
“>”与“<”左边的为大于号,右边的为小于号
区别方法
不等号的开口方向为大数值,反之为小数值
示例:5>3 不等号的开口方向为5 所以5为大数值
扩展资料
不等号(Sign of inequality)是用以表示两个量数之间不等关系的符号。现在常用不等号包括五种:“≠”(不等号)、“> ”(大于号)、“<”(小于号)、“≥”(大于或等于)及“≤”(小于或等于)。
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≤,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
参考资料百度百科-不等号
举个例子:35和30进行比较,即35比30大,则35>30,那么就很容易记住>就是大于号了,反之<则为小于号.
大于号是数学中不等式运算符号的一种。 英国人哈里奥特于1631年开始采用现今通用之“大于”号“>”及“小于”号“<”,但并未为当时数学界所接受。直至百多年后才渐成标准之应用符号。 1655年沃利斯曾以表示“等于或大于” ,到了1670年,他以及分别表示“等于或大于”和“等于或小于”。据哥德巴赫于1734 年1月写给欧拉的一封信所述,现今通用之≧ 和≦符号为一法国人P.布盖(1698-1758) 所首先采用,然后逐渐流行。 庞加莱与波莱尔于1901年引入符号<<(远小于)和>>(远大于),很快为数学界所接受,沿用至今。
乘号曾经用过十几种,现代数学通用两种。一个是“×”,最早是英国数学家奥屈特1631年提出的;一个是“·”,最早是英国数学家赫锐奥特首创的。德国数学家 莱布尼茨认为:“×”号像拉丁字母“X”,可能引起混淆而加以反对,并赞成用“·”号(事实上点乘在某些情况下亦易与小数点相混淆)。后来他还提出用“∩“表示 相乘。这个符号在现代已应用到 集合论中了。
到了十八世纪,美国数学家欧德莱确定,把 “×”作为乘号。他认为“×”是“+”的旋转变形,是另一种表示增加的符号。
“÷”最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用“:”表示 除或 比,另外有人用“-”(除线)表示除。后来 瑞士数学家 拉哈在他所著的《 代数学》里,才根据群众创造,正式将“÷”作为 除号。
平方根号曾经用拉丁文“Radix”(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家 笛卡儿在他的《 几何学》中,第一次用 “√”表示 根号。“√”是由拉丁字线“r”的变形,“ ̄”是括线。
十六世纪法国数学家维叶特用 “=”表示两个量的差别。可是英国 牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号“=”就从1540年开始使用起来。
1591年,法国数学家 韦达在 菱形中大量使用这个符号,才逐渐为人们接受。十七世纪德国 莱布尼茨广泛使用了“=”号,他还在几何学中用 “∽”表示 相似,用 “≌”表示 全等。
大于号 “>”和小于号 “<”,是1631年英国著名 代数学家赫锐奥特创用。至于 “≥”、“≤”、“≠”这三个符号的出现,是很晚很晚的事了。 大括号 “{}”和 中括号 “[]”是代数创始人之一魏治德创造的。
任意号(全称量词)∀来源于英语中的any一词,因为小写和大写均容易造成混淆,故将其单词首字母大写后倒置。同样,存在号(存在量词)∃来源于exist一词中E的反写。