高数关于多元函数微分法的题目

三道题目,求详解... 三道题目,求详解 展开
笑笑cxp
2013-04-19 · TA获得超过2.1万个赞
知道大有可为答主
回答量:3194
采纳率:84%
帮助的人:1030万
展开全部
2、
这个函数在(1,0)点连续,所以极限值等于这点的函数值,因此结果为
ln(1+e^0)/√(1²+0²)=(ln2)

3、e=lim(x→∞)(1+1/x)^x
从上式可以推导得出,lim(x→∞,y→y0)(1+y0/x)^x=e^y0,

5、
解:设y=kx (k不等于0),则lim(x->0,y->0)[(x²-y²)/(x²+y²)]=lim(x->0,y->0)[(x²-kx²)/(x²+k²x²)=lim(x->0,y->0)[(1-k²)/(1+k²)
∵对于不同的k值,上式极限有不同的值
∴它的极限不存在。

【数学之美】团队很高兴为您解决问题!
有不明白的可以追问我哟!
如果觉得答案可以,请点击下面的【选为满意回答】按钮!
还有什么有点小困惑的,可以求助我哦,亲~
無奈X
2013-04-19 · 超过19用户采纳过TA的回答
知道答主
回答量:46
采纳率:0%
帮助的人:49.6万
展开全部
4题 答案 e^y0
2题 应该是ln2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式