已知cos(π/4+x)=4/5,x属于(﹣π/2,﹣π/4),求(sin2x-2sin²x)/1+tanx的值?
1个回答
展开全部
解答:
原式(sin2x-2sin²x)/(1+tanx)
先求出各值
cos(π/4+x)=4/5 x∈(-π/2,-π/4),
sin(π/4+x)=-3/5 x∈(-π/2,-π/4),
sinx=sin(π/4+x) cosπ/4- sin(π/4) cos(π/4+x)= (-7√2 )/10;
cosx=√2 /10;
(sin2x-2sin方x)/(1+tanx)
=(2sinxcosx-2sinxsinx)/((cosx+sinx)/cosx)
=2sinxcosx(cosx-sinx)/(cosx+sinx)
=28/75
原式(sin2x-2sin²x)/(1+tanx)
先求出各值
cos(π/4+x)=4/5 x∈(-π/2,-π/4),
sin(π/4+x)=-3/5 x∈(-π/2,-π/4),
sinx=sin(π/4+x) cosπ/4- sin(π/4) cos(π/4+x)= (-7√2 )/10;
cosx=√2 /10;
(sin2x-2sin方x)/(1+tanx)
=(2sinxcosx-2sinxsinx)/((cosx+sinx)/cosx)
=2sinxcosx(cosx-sinx)/(cosx+sinx)
=28/75
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询