等差数列,求大神解答啊,要步骤
设公比不为1的等比数列{an}满足:a1,a3,a2成等差数列。⑴求公比q的值。⑵证明:对于任意k∈N*,ak,ak+2,ak+1成等差数列。...
设公比不为1的等比数列{an}满足:a1,a3,a2成等差数列。⑴求公比q的值。⑵证明:对于任意k∈N*,ak,ak+2,ak+1成等差数列。
展开
3个回答
展开全部
解:
(1)
2a3=a1+a2
2a1*q²=a1+a1q
a1*(2q²-q-1)=0
a1(2q+1)(q-1)=0
根据题意,只能是2q+1=0
q=-1/2
(2)
a(k+2)=ak*q²=ak/4
a(k+1)=ak*q=-ak/2
ak+a(k+1)=ak-ak/2=ak/2
2ak+2=ak/2=ak+a(k+1)
所以ak,a(k+2),a(k+1)是等差数列。
如仍有疑惑,欢迎追问。 祝:学习进步!
(1)
2a3=a1+a2
2a1*q²=a1+a1q
a1*(2q²-q-1)=0
a1(2q+1)(q-1)=0
根据题意,只能是2q+1=0
q=-1/2
(2)
a(k+2)=ak*q²=ak/4
a(k+1)=ak*q=-ak/2
ak+a(k+1)=ak-ak/2=ak/2
2ak+2=ak/2=ak+a(k+1)
所以ak,a(k+2),a(k+1)是等差数列。
如仍有疑惑,欢迎追问。 祝:学习进步!
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)a1
a3=a1*q^2
a2=a1*q 成等差数列
所以 a3-a1=a2-a3 上式带入可得 q=1或者-1/2
由于题目中q≠1
所以q=-1/2
(2)
当q=-1/2时,
ak+2=ak*1/4
ak+1=ak*(-1/2)
ak +ak+1=ak*(1-1/2)=2 * 1/4ak=2*ak
中项的两倍等于前后两项之和,故为等差数列
【数学之美】团队很高兴为您解决问题!
有不明白的可以追问我哟!
如果觉得答案可以,请点击下面的【选为满意回答】按钮!
还有什么有点小困惑的,可以求助我哦,亲~
a3=a1*q^2
a2=a1*q 成等差数列
所以 a3-a1=a2-a3 上式带入可得 q=1或者-1/2
由于题目中q≠1
所以q=-1/2
(2)
当q=-1/2时,
ak+2=ak*1/4
ak+1=ak*(-1/2)
ak +ak+1=ak*(1-1/2)=2 * 1/4ak=2*ak
中项的两倍等于前后两项之和,故为等差数列
【数学之美】团队很高兴为您解决问题!
有不明白的可以追问我哟!
如果觉得答案可以,请点击下面的【选为满意回答】按钮!
还有什么有点小困惑的,可以求助我哦,亲~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
an=a1q^n-1
2a3=a1+a2
2a1q^2=a1+a1q
2q^2-q-1=0
q=-1/2,q=1(舍去)
q=-1/2
2)ak=a1q^k-1,ak+2=a1q^k+1,ak+1=a1q^k
ak*ak+1=(ak+2)2
a1^2q^2k-1=a1^2*q^2(k+1)
q=-1/2
ak+ak+1=a1q^k-1+a1q^k=a1q^k(1+1/q)=-a1q^k
ak+2=a1q^k+1=-2a1q^k
ak+ak+1=2ak+2
ak,ak+2,ak+1成等差数列
2a3=a1+a2
2a1q^2=a1+a1q
2q^2-q-1=0
q=-1/2,q=1(舍去)
q=-1/2
2)ak=a1q^k-1,ak+2=a1q^k+1,ak+1=a1q^k
ak*ak+1=(ak+2)2
a1^2q^2k-1=a1^2*q^2(k+1)
q=-1/2
ak+ak+1=a1q^k-1+a1q^k=a1q^k(1+1/q)=-a1q^k
ak+2=a1q^k+1=-2a1q^k
ak+ak+1=2ak+2
ak,ak+2,ak+1成等差数列
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |