T-T 一道数学题,求解答! 完整步骤.
如图:AD是△ABC中BC边上的中线,A’D’是△A’B’C’中B’C’边上的中线,AB/A'B'=AC/A'C'=AD/A'D',试说明△ABC∽△A′B′C′...
如图:AD是△ABC中BC边上的中线,A’D’是△A’B’C’中B’C’边上的中线,AB/A'B'=AC/A'C'=AD/A'D',试说明△ABC∽△A′B′C′
展开
展开全部
中线辅助线的典型引法-------倍长中线。
即延长中线等于中线长,之后证明两个大三角形相似,推出角A和A’相等,
然后用两边对应成比例,夹角相等证明结论。
延长AD至点E使得AD=DE,
连接BE,有△ACD≌△EBD,
同理,延长A’D’至E’,使得A’D’=D'E’,
于是有AE/A’E’=2AD/2A’E’=AD/A’E’=AB/A’B’=AC/A’C’=BE/B’E’,
所以△ABE∽△A’B’E’,
所以 ∠E= ∠E’, ∠BAE= ∠B’A’E’,
所以 ∠DAC= ∠D’A’C’,
所以 ∠BAC= ∠B’A’C’,
AB/A’B’=AC/A’C’
所以△ABC∽△A′B′C′
【数学之美】团队很高兴为您解决问题!有不明白的可以追问我哟!
如果觉得答案可以,请点击下面的【选为满意回答】按钮!
还有什么有点小困惑的,可以求助我哦,亲~
即延长中线等于中线长,之后证明两个大三角形相似,推出角A和A’相等,
然后用两边对应成比例,夹角相等证明结论。
延长AD至点E使得AD=DE,
连接BE,有△ACD≌△EBD,
同理,延长A’D’至E’,使得A’D’=D'E’,
于是有AE/A’E’=2AD/2A’E’=AD/A’E’=AB/A’B’=AC/A’C’=BE/B’E’,
所以△ABE∽△A’B’E’,
所以 ∠E= ∠E’, ∠BAE= ∠B’A’E’,
所以 ∠DAC= ∠D’A’C’,
所以 ∠BAC= ∠B’A’C’,
AB/A’B’=AC/A’C’
所以△ABC∽△A′B′C′
【数学之美】团队很高兴为您解决问题!有不明白的可以追问我哟!
如果觉得答案可以,请点击下面的【选为满意回答】按钮!
还有什么有点小困惑的,可以求助我哦,亲~
展开全部
延长AD至E,A'D'至E'使得AD=DE,A'D'=D'E'
先利用全等得到AC=BE,A'C'=B'E'
然后利用已知的比例关系得到ABE与A'B'E'相似
然后得到角ABE=角A'B'E'
从而推出角BAC=角B'A'C'
最后得到相似
思路就是这样,有问题请追问
先利用全等得到AC=BE,A'C'=B'E'
然后利用已知的比例关系得到ABE与A'B'E'相似
然后得到角ABE=角A'B'E'
从而推出角BAC=角B'A'C'
最后得到相似
思路就是这样,有问题请追问
追问
TAT 蟹蟹
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分别延长AD、A'D'到点E、E',使AD = DE A'D' = D'E' 再连接BD、B'D'
则容易证明 △ACD ≌△EBD △A'C'D' ≌△E'B'D'
∴ AC = EB A'C' = E'B'
于是根据已知可得:EB/E‘B’ = AB/A‘B’ = AE/A‘E’
∴△AEB ∽△A‘E’B‘
下略可以了吗。不明白可追问
追问:错了吧,画不了,BD在一直线上啊回答:
打错了,是连接EB、E‘B’
则容易证明 △ACD ≌△EBD △A'C'D' ≌△E'B'D'
∴ AC = EB A'C' = E'B'
于是根据已知可得:EB/E‘B’ = AB/A‘B’ = AE/A‘E’
∴△AEB ∽△A‘E’B‘
下略可以了吗。不明白可追问
追问:错了吧,画不了,BD在一直线上啊回答:
打错了,是连接EB、E‘B’
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
延长AD至E,A'D'至E'使得AD=DE,A'D'=D'E'
先利用全等得到AC=BE,A'C'=B'E'
然后利用已知的比例关系得到ABE与A'B'E'相似
然后得到角ABE=角A'B'E'
从而推出角BAC=角B'A'C'
先利用全等得到AC=BE,A'C'=B'E'
然后利用已知的比例关系得到ABE与A'B'E'相似
然后得到角ABE=角A'B'E'
从而推出角BAC=角B'A'C'
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询