北师大版七年级数学上册所有概念、公理、公式
请把北师大版七年级数学上册的每课的重点内容整理出来不需要按顺序如:第二章8有理数的乘法有理数乘法法则两数相乘……就像这样谢谢...
请把北师大版七年级数学上册的每课的重点内容整理出来
不需要按顺序
如:第二章 8 有理数的乘法 有理数乘法法则 两数相乘……
就像这样
谢谢 展开
不需要按顺序
如:第二章 8 有理数的乘法 有理数乘法法则 两数相乘……
就像这样
谢谢 展开
展开全部
北师大版七年级数学上册所有概念、公理、公式:
第一章 走进数学世界
1、点动成线,线动成面,面动成体。
2、面与面相交得到线,线与线相交得到点。
3、n棱柱 面:n+2 边(棱):3n 顶点:2n
4、截面的定义:用一个平面去截一个几何体,截出的面叫截面。
5、正方体的截面可以是三角形、四边形、五边形、六边形。
6、几何体的截面由平面与几何体各表面交线构成。
7、在棱柱中,任何相邻的两个面的交线都叫做棱,相邻两个侧面的交线叫做侧棱,棱柱的所有侧棱长都相等。
8、棱柱的上、下地面形状相同,侧面的形状都是长方形。
9、多边形特征:从同一个顶点出发可以得到n-3条对角线,n-2个三角形。
10、一般地,我们把从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看的图叫做俯视图。
11、主视图的列数与俯视图的列数相同。
12、圆上A、B两点之间的部分叫做弧,由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。圆可以分割成若干个扇形。
第二章 有理数
1、像5、1.2…这样的数叫做正数,它们都比0大。
2、在正数前面加上“-”号的数叫做负数,如-10、-3…
3、0既不是正数,也不是负数。
4、整数:正整数、零、负整数
5、分数:正分数、负分数
6、整数与分数统称为有理数。
7、画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到下面的数轴。三要素:原点、单位长度、正方向。
8、任何一个有理数都可以用数轴上的一个点表示。
9、如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。特别地,0的相反数是0。
10、表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等。
11、数轴上两个点表示的书,右边的总比左边的大。
12、正数大于0,负数小于0,正数大于负数。
13、绝对值定义:
几何定义:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
14、两个负数比较大小,绝对值大的反而小。
15、有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
互为相反数的两数相加得零。
16、有理数加法步骤:①先判断符号②取符号③绝对值相加(相减)
17、加法的交换律:a+b=b+a(注:a、b可以为任意一个有理数)
加法的结合律:(a+b)+c=a+(b+c)注意点:互为相反数、整数、同分母、同号
18、有理数减法法则:减去一个数等于加上这个数的相反数。
19、减法步骤:①减号变为加号②减数变为它的相反数③用有理数的加法计算
20、减法可以转化为加法。同号为正,异号为负。
21、在加法运算中,可以吧括号以及它前面的加号一起省略。
22、加减混合运算步骤:①减号变加号②运用加法交换律和结合律
23、有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。任何数与0相乘,积仍为0。
24、乘积为1的两个有理数互为倒数。
25、积的符号由负因数的个数决定,当负因数有奇数个时,积的符号取负号,当负因数有偶数个时,积的符号取正号。
26、乘法的交换律:ab=ba
乘法的结合律:(a×b)×c=a×(b×c)
乘法对加法的分配律:a×(b+c)=ab+ac
27、除法法则:①两个有理数相除,同号得正,异号得负,绝对值相除。0除以任何非0的数都得0。
注意:0不能作除数。
②除以一个数等于乘以它的倒数。
28、这种求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂,a叫做底数,n叫做指数。
29、任意一个数的0次方等于1。
30、正数的任意次方都是正数;负数的奇次方为负数,负数的偶次方为正数。
31、先算乘方,再算乘除,最后算加减。如果有括号,先算括号里面的。
第三章 整式的加减
1、代数式:
(1)特点:①有字母或有理数②必含运算符号
(2)定义:用运算符号吧有理数连接起来或字母连接起来的式子叫做代数式。
注意点:数字在字母前面。单独一个数或字母也是代数式。
2、单项式:由数字和字母的乘积组成的代数式,其中的数字因数称为它的系数。(单个字母或数字也是单项式)(把不包含字母的单项式叫做常数项)
3、多项式:几个单项式的和。(在多项式中,每个单项式叫做它的项)(多项式的每一项都包含它前面的符号)
4、单项式次数:所有字母的指数和。
多项式次数:它所包含的所有单项式中的最高次数。
5、所含字母相同,并且相同字母的指数也相同的项,叫做同类项。把同类项合并成一项就叫做合并同类项。所有常数项都是同类项。
6、在合并同类项是,我们把同类项的系数相加,字母和字母的指数不变。
7、去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉后,Yuan括号里各项的符号都不改变;
括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。
第四章 图形的初步认识
1、绷紧的琴弦、人行横道线都可以近似地看做线段。线段有两个端点。
将线段向一个方向无限延长就形成了射线。射线有一个端点。
将线段向两个方向无限延长就形成了直线。直线没有端点。
2、经过两点有且只要一条直线。
3、公理:两点之间的所有连线中,线段最短。
两点之间线段的长度,叫做这两点之间的距离。
4、比较长短方法:
①把它们放在同一条直线上比较
②用刻度尺量出线段AB与线段CD的长度,再进行比较。
5、角的定义:
①角是由两条具有公共端点的射线组成,两条射线的公共算点使这个角的顶点。
②角也可以看成时由一条射线绕着它的端点旋转而成的。
6、角的表示:
①用3个大写字母及符号“∠”,表示顶点的字母一定要写在三个字母的中间。
②用一个大写字母表示及符号“∠”,顶点处只有一个角时。
③用一个数字表示及符号“∠”,在角上加弧线。
④用一个希腊字母及符号“∠”,在角上加弧线。
7、∠AOB与∠DOB有一个公共顶点、一条公共边,同时,OD边落在∠AOB的内部,这就表明∠DOB小于∠AOB,记作∠DOB<∠AOB。
8、从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
9、1°的1/60为1分,记作“1′”,即1°=60′。
1′的1/60为1秒,记作“1″”,即1′=60″。
10、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线互相平行。
11、如果两条直线相交成直角,那么这两条直线互相垂直。
互相垂直的两条直线的交点叫做垂足。
12、平面内,过一点有且只有一条直线与已知直线垂直。
直线外一点与直线上各点连接的所有线段中,垂线段最短。过A点作l的垂线,垂足为B点。垂线段AB的长度叫做点A到直线l的距离。
第五章 数据的收集与表示
1、数据的收集
2、数据的表示
第一章 走进数学世界
1、点动成线,线动成面,面动成体。
2、面与面相交得到线,线与线相交得到点。
3、n棱柱 面:n+2 边(棱):3n 顶点:2n
4、截面的定义:用一个平面去截一个几何体,截出的面叫截面。
5、正方体的截面可以是三角形、四边形、五边形、六边形。
6、几何体的截面由平面与几何体各表面交线构成。
7、在棱柱中,任何相邻的两个面的交线都叫做棱,相邻两个侧面的交线叫做侧棱,棱柱的所有侧棱长都相等。
8、棱柱的上、下地面形状相同,侧面的形状都是长方形。
9、多边形特征:从同一个顶点出发可以得到n-3条对角线,n-2个三角形。
10、一般地,我们把从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看的图叫做俯视图。
11、主视图的列数与俯视图的列数相同。
12、圆上A、B两点之间的部分叫做弧,由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。圆可以分割成若干个扇形。
第二章 有理数
1、像5、1.2…这样的数叫做正数,它们都比0大。
2、在正数前面加上“-”号的数叫做负数,如-10、-3…
3、0既不是正数,也不是负数。
4、整数:正整数、零、负整数
5、分数:正分数、负分数
6、整数与分数统称为有理数。
7、画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到下面的数轴。三要素:原点、单位长度、正方向。
8、任何一个有理数都可以用数轴上的一个点表示。
9、如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。特别地,0的相反数是0。
10、表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等。
11、数轴上两个点表示的书,右边的总比左边的大。
12、正数大于0,负数小于0,正数大于负数。
13、绝对值定义:
几何定义:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
14、两个负数比较大小,绝对值大的反而小。
15、有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
互为相反数的两数相加得零。
16、有理数加法步骤:①先判断符号②取符号③绝对值相加(相减)
17、加法的交换律:a+b=b+a(注:a、b可以为任意一个有理数)
加法的结合律:(a+b)+c=a+(b+c)注意点:互为相反数、整数、同分母、同号
18、有理数减法法则:减去一个数等于加上这个数的相反数。
19、减法步骤:①减号变为加号②减数变为它的相反数③用有理数的加法计算
20、减法可以转化为加法。同号为正,异号为负。
21、在加法运算中,可以吧括号以及它前面的加号一起省略。
22、加减混合运算步骤:①减号变加号②运用加法交换律和结合律
23、有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。任何数与0相乘,积仍为0。
24、乘积为1的两个有理数互为倒数。
25、积的符号由负因数的个数决定,当负因数有奇数个时,积的符号取负号,当负因数有偶数个时,积的符号取正号。
26、乘法的交换律:ab=ba
乘法的结合律:(a×b)×c=a×(b×c)
乘法对加法的分配律:a×(b+c)=ab+ac
27、除法法则:①两个有理数相除,同号得正,异号得负,绝对值相除。0除以任何非0的数都得0。
注意:0不能作除数。
②除以一个数等于乘以它的倒数。
28、这种求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂,a叫做底数,n叫做指数。
29、任意一个数的0次方等于1。
30、正数的任意次方都是正数;负数的奇次方为负数,负数的偶次方为正数。
31、先算乘方,再算乘除,最后算加减。如果有括号,先算括号里面的。
第三章 整式的加减
1、代数式:
(1)特点:①有字母或有理数②必含运算符号
(2)定义:用运算符号吧有理数连接起来或字母连接起来的式子叫做代数式。
注意点:数字在字母前面。单独一个数或字母也是代数式。
2、单项式:由数字和字母的乘积组成的代数式,其中的数字因数称为它的系数。(单个字母或数字也是单项式)(把不包含字母的单项式叫做常数项)
3、多项式:几个单项式的和。(在多项式中,每个单项式叫做它的项)(多项式的每一项都包含它前面的符号)
4、单项式次数:所有字母的指数和。
多项式次数:它所包含的所有单项式中的最高次数。
5、所含字母相同,并且相同字母的指数也相同的项,叫做同类项。把同类项合并成一项就叫做合并同类项。所有常数项都是同类项。
6、在合并同类项是,我们把同类项的系数相加,字母和字母的指数不变。
7、去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉后,Yuan括号里各项的符号都不改变;
括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。
第四章 图形的初步认识
1、绷紧的琴弦、人行横道线都可以近似地看做线段。线段有两个端点。
将线段向一个方向无限延长就形成了射线。射线有一个端点。
将线段向两个方向无限延长就形成了直线。直线没有端点。
2、经过两点有且只要一条直线。
3、公理:两点之间的所有连线中,线段最短。
两点之间线段的长度,叫做这两点之间的距离。
4、比较长短方法:
①把它们放在同一条直线上比较
②用刻度尺量出线段AB与线段CD的长度,再进行比较。
5、角的定义:
①角是由两条具有公共端点的射线组成,两条射线的公共算点使这个角的顶点。
②角也可以看成时由一条射线绕着它的端点旋转而成的。
6、角的表示:
①用3个大写字母及符号“∠”,表示顶点的字母一定要写在三个字母的中间。
②用一个大写字母表示及符号“∠”,顶点处只有一个角时。
③用一个数字表示及符号“∠”,在角上加弧线。
④用一个希腊字母及符号“∠”,在角上加弧线。
7、∠AOB与∠DOB有一个公共顶点、一条公共边,同时,OD边落在∠AOB的内部,这就表明∠DOB小于∠AOB,记作∠DOB<∠AOB。
8、从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
9、1°的1/60为1分,记作“1′”,即1°=60′。
1′的1/60为1秒,记作“1″”,即1′=60″。
10、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线互相平行。
11、如果两条直线相交成直角,那么这两条直线互相垂直。
互相垂直的两条直线的交点叫做垂足。
12、平面内,过一点有且只有一条直线与已知直线垂直。
直线外一点与直线上各点连接的所有线段中,垂线段最短。过A点作l的垂线,垂足为B点。垂线段AB的长度叫做点A到直线l的距离。
第五章 数据的收集与表示
1、数据的收集
2、数据的表示
展开全部
平均数问题公式 (一个数+另一个数)÷2
反向行程问题公式 路程÷(大速+小速
同向行程问题公式 路程÷(大速-小速)
行船问题公式 同上
列车过桥问题公式 (车长+桥长)÷车速
工程问题公式 1÷速度和
盈亏问题公式 (盈+亏)÷两次的相差数
利率问题公式 总利润÷成本×100%
中小学数学应用题常用公式
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%
反向行程问题公式 路程÷(大速+小速
同向行程问题公式 路程÷(大速-小速)
行船问题公式 同上
列车过桥问题公式 (车长+桥长)÷车速
工程问题公式 1÷速度和
盈亏问题公式 (盈+亏)÷两次的相差数
利率问题公式 总利润÷成本×100%
中小学数学应用题常用公式
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-04-19
展开全部
第一章 走进数学世界
1.走进数学世界
2.让我们做数学
3.走进数学世界
第二章 有理数
1.有理数的相关知识
2.有理数的加减法
3.有理数的乘除、乘方
4.有理数的混合运算
第三章 整式的加减
1.整式的加减
2.整式
3.整式(续)
第四章 图形的初步认识
1.立体图形与平面图形
2.最基本的图形——点、线、角
3.相交线中的角
4.垂线与平行线
5.平行线的识别和特征
第五章 数据的收集与表示
1.数据的收集与表示
第六章 一元一次方程
1.一元一次方程的概念及解法
2.一元一次方程的解法
3.一元一次方程的应用
4.一元一次不等式(组)
第七章 二元一次方程组
1.二元一次方程组的解法(续)
2.二元一次方程组的解法
3.三元一次方程组
4.二元一次方程组
5.二元一次方程组
6.二元一次方程组的解法及应用探究
第八章 多边形
1.多边形
2.多边形习题课
第九章 轴对称
1.轴对称
第十章 统计的初步认识
1.统计的意义
2.统计的初步认识复习
1.走进数学世界
2.让我们做数学
3.走进数学世界
第二章 有理数
1.有理数的相关知识
2.有理数的加减法
3.有理数的乘除、乘方
4.有理数的混合运算
第三章 整式的加减
1.整式的加减
2.整式
3.整式(续)
第四章 图形的初步认识
1.立体图形与平面图形
2.最基本的图形——点、线、角
3.相交线中的角
4.垂线与平行线
5.平行线的识别和特征
第五章 数据的收集与表示
1.数据的收集与表示
第六章 一元一次方程
1.一元一次方程的概念及解法
2.一元一次方程的解法
3.一元一次方程的应用
4.一元一次不等式(组)
第七章 二元一次方程组
1.二元一次方程组的解法(续)
2.二元一次方程组的解法
3.三元一次方程组
4.二元一次方程组
5.二元一次方程组
6.二元一次方程组的解法及应用探究
第八章 多边形
1.多边形
2.多边形习题课
第九章 轴对称
1.轴对称
第十章 统计的初步认识
1.统计的意义
2.统计的初步认识复习
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
下册的好不
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |