1个回答
展开全部
求定积分:
1。【0,3】∫(x-1)(x+2)dx=【0,3】∫(x²+x-2)dx=(x³/3+x²/2-2x)【0,3】=9+9/2-6=15/2
2。【1,4】∫(x²+2x+5)/[x^(3/2)]dx=【1,4】∫[x^(1/2)+2x^(-1/2)+5x^(-3/2)]dx
=[(3/2)x^(2/3)+4x^(1/2)-10x^(-1/2)]【1,4】=(12+8-5)-(3/2+4-10)=15-9/2=21/2
3。【0,π/4】∫sec²xdx=tanx【0,π/4】=1
4。【0,π/4】∫tan²xdx=【0,π/4】∫(sin²x/cos²x)dx=【0,π/4】∫[(1-cos²x)/cos²x]dx
=【0,π/4】[∫(1/cos²x)dx-∫dx]=[tanx-x]【0,π/4】=1-π/4
1。【0,3】∫(x-1)(x+2)dx=【0,3】∫(x²+x-2)dx=(x³/3+x²/2-2x)【0,3】=9+9/2-6=15/2
2。【1,4】∫(x²+2x+5)/[x^(3/2)]dx=【1,4】∫[x^(1/2)+2x^(-1/2)+5x^(-3/2)]dx
=[(3/2)x^(2/3)+4x^(1/2)-10x^(-1/2)]【1,4】=(12+8-5)-(3/2+4-10)=15-9/2=21/2
3。【0,π/4】∫sec²xdx=tanx【0,π/4】=1
4。【0,π/4】∫tan²xdx=【0,π/4】∫(sin²x/cos²x)dx=【0,π/4】∫[(1-cos²x)/cos²x]dx
=【0,π/4】[∫(1/cos²x)dx-∫dx]=[tanx-x]【0,π/4】=1-π/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询