f(x)=sinx+sin2x求导,并证明在cosx=(-1+根号33)\8时f(x)的值最大

一个人郭芮
高粉答主

2013-04-21 · GR专注于各种数学解题
一个人郭芮
采纳数:37942 获赞数:84704

向TA提问 私信TA
展开全部
对f(x)=sinx+sin2x求导得到
f '(x)=cosx +2cos2x
而cos2x=2cos²x -1
所以
f '(x)=4cos²x+cosx -2

令f '(x)=0
解得cosx= (-1+√33)/8或(-1-√33)/8

再对f '(x)求导得到
f "(x)= -8cosx*sinx -sinx =(-8sinx -1) *cosx
由极值的判定定理可以知道,
f '(a)=0且f "(a)<0时,f(a)为f(x)的极大值

而f "(x)=(-8sinx -1) *cosx
显然此时(-8sinx -1)一定小于0,

所以cosx >0,
因此cosx= (-1+√33)/8时,f(x)的值最大
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式