分式化简求值题及答案
2个回答
展开全部
分式的化简求值主要分为三大类:
1、所给已知值是非常简单的数值,无须化简或变形,但所给的分式却是一个较复杂的式子.如:
例1、先化简、后求值: ,其中x=3.
分析:本题属于“所给已知值‘x=3’是非常简单的数值,无须化简或变形,但是,所给出的分式‘
’却是一个较复杂的式子”的类型,所以在求值前只需要将“所给分式进行化简后,再把已知值代入化简后的式子便可求出原式的值.
原式=
∴当时x=3,原式= .
点评:分式的乘除法运算或化简应该先将能分解因式的分子、分母进行因式分解,然后再进行约分,达到计算或化简的目的.
2、所给已知值是一些比较复杂甚至是非常复杂的数值,但所给的分式却是一个非常简单的式子.如:
例2、当时a2b+ab2-5a2b2=0,求 的值.
分析:本题就属于“所给已知值‘a2b+ab2-5a2b2=0’是一些比较复杂的数值”,而“所给的分式‘ ’却是一个非常简单的式子.因此,在求值前只需要将“所给已知值‘a2b+ab2-5a2b2=0’ 进行化简或变形后,再代入所给分式中便可求值” .
解法一:既然要求分式 的值,说明分母ab≠0,否则分式
没有意义.
∴在式子a2b+ab2-5a2b2=0的两边同时除以a2b2,
得 ,即,∴ .
解法二:既然要求分式 的值,说明分母ab≠0,否则分式
没有意义.
∵a2b+ab2-5a2b2=0,∴ab(a+b-5ab)=0,则a+b-5ab=0,即a+b=5ab,当a+b=5ab时,原式 .
点评:求一个分式的值,往往只要利用分式的性质“ ”或称之为约分的方法而求得.
例3、已知:x2-7x+1=0,求 的值.
分析:本题在题型上与“例2”基本相同,但解题的方法略有不同.
既然要求分式 的值,说明分母x≠0,否则分式 没有意义.
在x2-7x+1=0的两边同除以x,得: ,则有
,即x-7+ =0,∴x+ =0 .
点评:通过变形,将已知式子转化为所要求值的式子而自然地得到所求分式的值是分式求值题一个重要的解题方法.
3、所给已知值是一些比较复杂甚至是非常复杂的数值,化简或变形后更有利于准确地求出所给分式的值,不仅如此,而且所给的分式也是一个较复杂的式子.如:
例4、已知: 求 的值.
分析:本题属于“所给已知值 是比较复杂的数值,变形后更有利于准确地求出所给分式 的值,不仅如此,而且所给的分式 也是一个较复杂的式子”.因此,先将 进行变形,可得x-y=-3xy,再将所给式子 进行变形,可得 = ,然后将已知式子变形后的式子代入,便得到了所要求的式子的值.
∵ ,∴x≠0,y≠0,则xy≠0.
∴在 的两边同时乘以xy,得:y-x=3xy,即x-y=-3xy,
又∵ ,
∴当x-y=-3xy时,原式 .
注意:本题也可以把它看作是上述第1种类型的题目来解,解法如下:
∵ ,∴x≠0,y≠0,则xy≠0.在的 分子、分母同时除以xy,得:
∴当 时,原式 .
1、所给已知值是非常简单的数值,无须化简或变形,但所给的分式却是一个较复杂的式子.如:
例1、先化简、后求值: ,其中x=3.
分析:本题属于“所给已知值‘x=3’是非常简单的数值,无须化简或变形,但是,所给出的分式‘
’却是一个较复杂的式子”的类型,所以在求值前只需要将“所给分式进行化简后,再把已知值代入化简后的式子便可求出原式的值.
原式=
∴当时x=3,原式= .
点评:分式的乘除法运算或化简应该先将能分解因式的分子、分母进行因式分解,然后再进行约分,达到计算或化简的目的.
2、所给已知值是一些比较复杂甚至是非常复杂的数值,但所给的分式却是一个非常简单的式子.如:
例2、当时a2b+ab2-5a2b2=0,求 的值.
分析:本题就属于“所给已知值‘a2b+ab2-5a2b2=0’是一些比较复杂的数值”,而“所给的分式‘ ’却是一个非常简单的式子.因此,在求值前只需要将“所给已知值‘a2b+ab2-5a2b2=0’ 进行化简或变形后,再代入所给分式中便可求值” .
解法一:既然要求分式 的值,说明分母ab≠0,否则分式
没有意义.
∴在式子a2b+ab2-5a2b2=0的两边同时除以a2b2,
得 ,即,∴ .
解法二:既然要求分式 的值,说明分母ab≠0,否则分式
没有意义.
∵a2b+ab2-5a2b2=0,∴ab(a+b-5ab)=0,则a+b-5ab=0,即a+b=5ab,当a+b=5ab时,原式 .
点评:求一个分式的值,往往只要利用分式的性质“ ”或称之为约分的方法而求得.
例3、已知:x2-7x+1=0,求 的值.
分析:本题在题型上与“例2”基本相同,但解题的方法略有不同.
既然要求分式 的值,说明分母x≠0,否则分式 没有意义.
在x2-7x+1=0的两边同除以x,得: ,则有
,即x-7+ =0,∴x+ =0 .
点评:通过变形,将已知式子转化为所要求值的式子而自然地得到所求分式的值是分式求值题一个重要的解题方法.
3、所给已知值是一些比较复杂甚至是非常复杂的数值,化简或变形后更有利于准确地求出所给分式的值,不仅如此,而且所给的分式也是一个较复杂的式子.如:
例4、已知: 求 的值.
分析:本题属于“所给已知值 是比较复杂的数值,变形后更有利于准确地求出所给分式 的值,不仅如此,而且所给的分式 也是一个较复杂的式子”.因此,先将 进行变形,可得x-y=-3xy,再将所给式子 进行变形,可得 = ,然后将已知式子变形后的式子代入,便得到了所要求的式子的值.
∵ ,∴x≠0,y≠0,则xy≠0.
∴在 的两边同时乘以xy,得:y-x=3xy,即x-y=-3xy,
又∵ ,
∴当x-y=-3xy时,原式 .
注意:本题也可以把它看作是上述第1种类型的题目来解,解法如下:
∵ ,∴x≠0,y≠0,则xy≠0.在的 分子、分母同时除以xy,得:
∴当 时,原式 .
2013-04-20
展开全部
什么?看不清吗? 将方程组标为①式和②式,a*①,b*② 3a 4b=7a 10b=a b 得到a/b=-3/2 令a=3,b=-2 3*① (-2*②),得 所求式=5 补充的第一小题是 把给出的三个等式相加得到1/a 1/b 1/c的值 要求的那个分式分子分母同时除以abc,=1/(1/a 1/b 1/c) 带入就可以了 4. x y z=0推出x y=-z x z=-y y z=-x 所求式=x/|-x| y/|-y| z/|-z| 约分需讨论x,y,z的正负 因为x y z=0,xyz不等于0 所以x,y,z中必有一正一负,剩下的一个正负不定 讨论①三者中一正两负,假设x>0,y<0,z<0 则原式=1-1-1=-1 ②三者中两正一负,假设x>0,y>0,z<0 则原式=1 1-1=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |