如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=4,∠BAC=∠DEF=90°,
1)问:始终与△AGC相似的三角形有△HAB及△HGA;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);(3)问:当x为何值时,△...
1)问:始终与△AGC相似的三角形有△HAB及△HGA;
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);
(3)问:当x为何值时,△AGH是等腰三角形 展开
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);
(3)问:当x为何值时,△AGH是等腰三角形 展开
3个回答
展开全部
1)∠ACG=∠ABH=∠GAH=45°,
∠GAC=∠AHB=∠AHC,故△AGC始终相似于△HAB及△HGA
(2)CG/sin∠GAC=AC/sin∠AGC=4/sin∠AGC, CGsin∠AGC=4sin∠GAC
BH/sin∠BAH=AB/sin∠AHB=4/sin∠GAC, BHsin∠GAC=4sin∠AGC
两式相乘,即得xy=16
(3)BC=4√2,GH=BH-(BC-CG)=BH+CG-BC=BH+CG-4√2
当DF与AC重合时,△AGH是等腰,此时x=2√2
当∠GDF的平分线与∠BAC的平分线重合时,△AGH是等腰三角形,此时x=4-2√2
不知道对不对,请指正
∠GAC=∠AHB=∠AHC,故△AGC始终相似于△HAB及△HGA
(2)CG/sin∠GAC=AC/sin∠AGC=4/sin∠AGC, CGsin∠AGC=4sin∠GAC
BH/sin∠BAH=AB/sin∠AHB=4/sin∠GAC, BHsin∠GAC=4sin∠AGC
两式相乘,即得xy=16
(3)BC=4√2,GH=BH-(BC-CG)=BH+CG-BC=BH+CG-4√2
当DF与AC重合时,△AGH是等腰,此时x=2√2
当∠GDF的平分线与∠BAC的平分线重合时,△AGH是等腰三角形,此时x=4-2√2
不知道对不对,请指正
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询