如图,直线AC∥BD,连结AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,

如图,直线AC∥BD,连结AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连结PA、PB,构成∠PA... 如图,直线AC∥BD,连结AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连结PA、PB,构成∠PAC、∠APB、∠PBD三个角. (提示:有公共端点的两条重合的射线所组成的角是0°)
1.当动点P落在第①部分时,有∠APB=∠PAC+∠PBD,请说明理由;
2.当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立(直接回答成立或不成立)?
3.当动点P在第③部分时,探究∠PAC、∠APB、∠PBD之间的关系,直接写出你发现的结论.
展开
 我来答
今朝天涯梦里人
2013-04-21 · TA获得超过2795个赞
知道小有建树答主
回答量:291
采纳率:0%
帮助的人:221万
展开全部

1.过点P作直线AC的平行线(如图),易知∠1=∠PAC,∠2=∠PBD,

又∵∠APB=∠1+∠2,

∴∠APB=∠PAC+∠PBD.

 

 

2.不成立.

过点P作AC的平行线PQ,∠APB=∠1+∠2,

∵直线AC∥BD,

∴∠PAC+∠1=180°,∠PBD+∠2=180°,

∴∠PAC+∠1+∠PBD+∠2=360°,

故∠APB=∠PAC+∠PBD不成立.(

 

 

3.设射线BA将区域③分成Ⅰ、Ⅱ两部分(如左图),

①若点P位于第Ⅰ部分(如中图),则∠PBD=∠3,∠PAC+∠APB=∠3,

所以∠APB=∠PBD-∠PAC,

②若点P位于第Ⅱ部分(如右图),则∠PBD=∠6+∠ABD,∠PAC=∠4+∠5,∠ABD=∠5,

∴∠PAC-∠PBD=∠4-∠6,

而∠6+∠APB=∠4,

∴∠APB=∠PAC-∠PBD.

③P落在射线BA上时,∠PAC=∠PBD,∠APB=0°.

 

 

解析:

1.过点P作AC的平行线,根据平行线的性质将∠PAC,∠PBD等量转化,证出结论.

2.过点P作AC的平行线PQ,∠APB=∠APQ+∠QPB,∠PAC与∠APQ是一对同旁内角,∠QPB与∠PBD也是一对同旁内角,根据两直线平行,同旁内角互补,发现三个角的和是360度.

3.根据BA的延长线上,或两侧分别解答.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式