数学题目!!!高手帮帮忙!
1.证明下列题目:1.)sin78度+cos132度=sin18度2.)cos15度+sin15度/cos15度-sin15度=根号32.如果x+y+z=π证明:sin(...
1.证明下列题目:
1.) sin78度+cos132度=sin18度
2.) cos15度+sin15度/cos15度-sin15度=根号3
2.如果x+y+z =π
证明:
sin(x+y)=sin z
cos(x+y)=-cos z
sin2x+sin2y+sin2z=4sinxsinysinz
3. X的所有角, 证明
sinx+sin(x+2π/3)+sin(x+4π/3)=0 展开
1.) sin78度+cos132度=sin18度
2.) cos15度+sin15度/cos15度-sin15度=根号3
2.如果x+y+z =π
证明:
sin(x+y)=sin z
cos(x+y)=-cos z
sin2x+sin2y+sin2z=4sinxsinysinz
3. X的所有角, 证明
sinx+sin(x+2π/3)+sin(x+4π/3)=0 展开
2个回答
展开全部
1.证明:sin78º+cos132º=sin78º+cos(180º-48º)=sin78º-cos48º=sin(60º+18º)-cos(30º+18º)=1/2sin18º+√3/2cos18º-√3/2cos18º+1/2sin18º=sin18º
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1(1)
sin78°+cos132°
=sin78°-sin42°
=2cos60°sin18°
=sin18°
(2)
(cos15°+sin15°)/(cos15°-sin15°)
=(sin75°+sin15°)/(sin75°-sin15°)
=(2sin45°cos30°)/(2cos45°sin30°)
=cot30°
=√3
2、x+y+z =π
sin(x+y)=sin(π-z)=sinz
cos(x+y)=cos(π-z)=-cos z
sin2x+sin2y+sin2z
=2sin(x+y)cos(x-y)+sin2z
=2sinzcos(x-y)+2sinzcosz
=2sinz[cos(x-y)+cosz]
=(2sinz)×[2cos(x+z-y)/2][cos(x-y-z)/2]
=(4sinz)cos(π/2-y)cos(π/2-x)
=(4sinz)(siny)(sinx)
=4sinxsinysinz
3、sinx+sin(x+2π/3)+sin(x+4π/3)
=sinx+2sin(x+π)cos(π/3)
=sinx+(-sinx)
=0
sin78°+cos132°
=sin78°-sin42°
=2cos60°sin18°
=sin18°
(2)
(cos15°+sin15°)/(cos15°-sin15°)
=(sin75°+sin15°)/(sin75°-sin15°)
=(2sin45°cos30°)/(2cos45°sin30°)
=cot30°
=√3
2、x+y+z =π
sin(x+y)=sin(π-z)=sinz
cos(x+y)=cos(π-z)=-cos z
sin2x+sin2y+sin2z
=2sin(x+y)cos(x-y)+sin2z
=2sinzcos(x-y)+2sinzcosz
=2sinz[cos(x-y)+cosz]
=(2sinz)×[2cos(x+z-y)/2][cos(x-y-z)/2]
=(4sinz)cos(π/2-y)cos(π/2-x)
=(4sinz)(siny)(sinx)
=4sinxsinysinz
3、sinx+sin(x+2π/3)+sin(x+4π/3)
=sinx+2sin(x+π)cos(π/3)
=sinx+(-sinx)
=0
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询