高数求证行列式
2cosa1000``````0012cosa100``````00012cosa10```````000012cosa1`````00`````````````````...
2cosa 1 0 0 0`````` 0 0
1 2cosa 1 0 0 `````` 0 0
0 1 2cosa 1 0 ``````` 0 0
0 0 1 2cosa 1 ````` 0 0
```````````````````
0 0 0 0 0 ``````2cosa 1
0 0 0 0 0 `````` 1 2cosa
=sin(n+1)a / sina 展开
1 2cosa 1 0 0 `````` 0 0
0 1 2cosa 1 0 ``````` 0 0
0 0 1 2cosa 1 ````` 0 0
```````````````````
0 0 0 0 0 ``````2cosa 1
0 0 0 0 0 `````` 1 2cosa
=sin(n+1)a / sina 展开
展开全部
2cosθ 1 0 ... 0 0
1 2cosθ 1 ... 0 0
...
0 0 0 ... 2cosθ 1
0 0 0 ... 1 2cosθ
=sin(n+1)θ/sinθ
证明:行列式记为Dn.
按第1列展开得: Dn=2cosθD(n-1) - D(n-2).
下用归纳法证明
当n=1时, D1=2cosθ
sin(n+1)θ/sinθ=sin2θ/sinθ=2cosθ.
所以n=1时结论成立,即D1=sin(1+1)θ/sinθ.
假设k<n时结论成立, 则k=n时
Dn=2cosθD(n-1) - D(n-2)
=2cosθsin(n-1+1)θ/sinθ - sin(n-2+1)θ/sinθ
=2cosθsinnθ/sinθ - sin(n-1)θ/sinθ
=[2cosθsinnθ - sin(n-1)θ]/sinθ
= ......
= sin(n+1)θ/sinθ
所以k=n时结论也成立.
综上可知, 对任意自然数n, Dn=sin(n+1)θ/sinθ.
1 2cosθ 1 ... 0 0
...
0 0 0 ... 2cosθ 1
0 0 0 ... 1 2cosθ
=sin(n+1)θ/sinθ
证明:行列式记为Dn.
按第1列展开得: Dn=2cosθD(n-1) - D(n-2).
下用归纳法证明
当n=1时, D1=2cosθ
sin(n+1)θ/sinθ=sin2θ/sinθ=2cosθ.
所以n=1时结论成立,即D1=sin(1+1)θ/sinθ.
假设k<n时结论成立, 则k=n时
Dn=2cosθD(n-1) - D(n-2)
=2cosθsin(n-1+1)θ/sinθ - sin(n-2+1)θ/sinθ
=2cosθsinnθ/sinθ - sin(n-1)θ/sinθ
=[2cosθsinnθ - sin(n-1)θ]/sinθ
= ......
= sin(n+1)θ/sinθ
所以k=n时结论也成立.
综上可知, 对任意自然数n, Dn=sin(n+1)θ/sinθ.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询