求教一道线性代数的题目,急求中
λ为何值时,次线性方程组有唯一解,无解或有无限多个解?并在有无限多解时求其同解要详细过程谢谢!!急求...
λ为何值时,次线性方程组有唯一解,无解或有无限多个解?并在有无限多解时求其同解 要详细过程谢谢!!急求
展开
展开全部
解: 系数行列式|A|=
2-λ 2 -2
2 5-λ -4
-2 -4 5-λ
r3+r2
2-λ 2 -2
2 5-λ -4
0 1-λ 1-λ
c2-c3
2-λ 4 -2
2 9-λ -4
0 0 1-λ
= (1-λ)[(2-λ)(9-λ)-8]
= (1-λ)(λ^2-11λ+10)
= -(λ-1)^2(λ-10).
所以λ≠1且λ≠10时,方程组有唯一解.
当λ=1时, 增广矩阵(A,b)=
1 2 -2 1
2 4 -4 2
-2 -4 4 -2
r2-2r1,r3+2r1
1 2 -2 1
0 0 0 0
0 0 0 0
故此时方程组有无穷多解, 通解为: (1,0,0)^T+c1(-2,1,0)^T+c2(2,0,1)^T.
当λ=10时, 增广矩阵(A,b)=
-8 2 -2 1
2 -5 -4 2
-2 -4 -5 -2
r1+4r2,r3+r2
0 -18 -18 9
2 -5 -4 2
0 -9 -9 0
r1-2r3
0 0 0 9
2 -5 -4 2
0 -9 -9 0
r(A)=2, r(A,b)=3,此时方程组无解.
2-λ 2 -2
2 5-λ -4
-2 -4 5-λ
r3+r2
2-λ 2 -2
2 5-λ -4
0 1-λ 1-λ
c2-c3
2-λ 4 -2
2 9-λ -4
0 0 1-λ
= (1-λ)[(2-λ)(9-λ)-8]
= (1-λ)(λ^2-11λ+10)
= -(λ-1)^2(λ-10).
所以λ≠1且λ≠10时,方程组有唯一解.
当λ=1时, 增广矩阵(A,b)=
1 2 -2 1
2 4 -4 2
-2 -4 4 -2
r2-2r1,r3+2r1
1 2 -2 1
0 0 0 0
0 0 0 0
故此时方程组有无穷多解, 通解为: (1,0,0)^T+c1(-2,1,0)^T+c2(2,0,1)^T.
当λ=10时, 增广矩阵(A,b)=
-8 2 -2 1
2 -5 -4 2
-2 -4 -5 -2
r1+4r2,r3+r2
0 -18 -18 9
2 -5 -4 2
0 -9 -9 0
r1-2r3
0 0 0 9
2 -5 -4 2
0 -9 -9 0
r(A)=2, r(A,b)=3,此时方程组无解.
更多追问追答
追问
(1,0,0)^T+c1(-2,1,0)^T+c2(2,0,1)^T是什么意思??
是1 -2 2
0 1 0
0 0 1 这样么??
追答
是转置为列向量
来自:求助得到的回答
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询