1个回答
展开全部
您好!
V=∫(-a,a) S(x) dx
截面:y^2/[(1-a^2/x^2)b^2] + z^2/[(1-a^2/x^2)c^2]=1
因此,截面积S(x)=bc(1-x^2/a^2)π
那么,
V
=∫(-a,a) S(x) dx
=∫(-a,a) bc(1-x^2/a^2)π dx
=bcπ∫(-a,a) 1-x^2/a^2 dx
=bcπ(x-x^3/3a^2) | (-a.a)
=[abcπ-abcπ/3]*2
=(4/3)abcπ
如果本题有什么不明白可以追问,如果满意记得采纳
如果有其他问题请另发或点击向我求助,答题不易,请谅解,谢谢。
祝学习进步!
V=∫(-a,a) S(x) dx
截面:y^2/[(1-a^2/x^2)b^2] + z^2/[(1-a^2/x^2)c^2]=1
因此,截面积S(x)=bc(1-x^2/a^2)π
那么,
V
=∫(-a,a) S(x) dx
=∫(-a,a) bc(1-x^2/a^2)π dx
=bcπ∫(-a,a) 1-x^2/a^2 dx
=bcπ(x-x^3/3a^2) | (-a.a)
=[abcπ-abcπ/3]*2
=(4/3)abcπ
如果本题有什么不明白可以追问,如果满意记得采纳
如果有其他问题请另发或点击向我求助,答题不易,请谅解,谢谢。
祝学习进步!
追问
可是这样哪里用到高斯公式了呢??
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询