计算2^3(3^2+1)(3^4+1)(3^8+1)....(3^32+1)+1,求详细过程
3个回答
展开全部
提示:2³=3²-1,然后反复运用平方差公式。
2³×(3²+1)(3⁴+1)(3^8+1)(3^16+1)(3^32+1)+1
=(3²-1)(3²+1)(3⁴+1)(3^8+1)(3^16+1)(3^32+1)+1
=(3⁴-1)(3⁴+1)(3^8+1)(3^16+1)(3^32+1)+1
=(3^8-1)(3^8+1)(3^16+1)(3^32+1)+1
=(3^16-1)(3^16+1)(3^32+1)+1
=(3^32-1)(3^32+1)+1
=3^64-1+1
=3^64
3^64表示3的64次方。
2³×(3²+1)(3⁴+1)(3^8+1)(3^16+1)(3^32+1)+1
=(3²-1)(3²+1)(3⁴+1)(3^8+1)(3^16+1)(3^32+1)+1
=(3⁴-1)(3⁴+1)(3^8+1)(3^16+1)(3^32+1)+1
=(3^8-1)(3^8+1)(3^16+1)(3^32+1)+1
=(3^16-1)(3^16+1)(3^32+1)+1
=(3^32-1)(3^32+1)+1
=3^64-1+1
=3^64
3^64表示3的64次方。
展开全部
2^3(3^2+1)(3^4+1)(3^8+1)....(3^32+1)+1
=8*(3^2+1)(3^4+1)(3^8+1)....(3^32+1)+1
=(3^2-1)*(3^2+1)(3^4+1)(3^8+1)....(3^32+1)+1
=(3^4-1)(3^4+1)(3^8+1)....(3^32+1)+1
=(3^8-1)(3^8+1)....(3^32+1)+1
=(3^16-1)....(3^32+1)+1
.......
=(3^32-1)(3^32+1)+1
=3^64-1+1
=3^64
=8*(3^2+1)(3^4+1)(3^8+1)....(3^32+1)+1
=(3^2-1)*(3^2+1)(3^4+1)(3^8+1)....(3^32+1)+1
=(3^4-1)(3^4+1)(3^8+1)....(3^32+1)+1
=(3^8-1)(3^8+1)....(3^32+1)+1
=(3^16-1)....(3^32+1)+1
.......
=(3^32-1)(3^32+1)+1
=3^64-1+1
=3^64
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
将2^3化成(3^2-1),
再逐次利用平方差公式,即有:
原式=(3^4-1)(3^4+1)(3^8+1)...(3^32+1)
=(3^8-1)(3^8+1)......(3^32+1)
=....
=3^64-1
再逐次利用平方差公式,即有:
原式=(3^4-1)(3^4+1)(3^8+1)...(3^32+1)
=(3^8-1)(3^8+1)......(3^32+1)
=....
=3^64-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询