如图,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+b)^+根号下b-2=0,过C作CB垂直x轴于B
在y轴上是否存在点p,使得三角形ABC和三角形ACP的面积相等,若存在,求出p点坐标,若不存在,请说明理由。(说明一下,答案我知道,就是不知道过程)好像有两种答案...
在y轴上是否存在点p,使得三角形ABC和三角形ACP的面积相等,若存在,求出p点坐标,若不存在,请说明理由。(说明一下,答案我知道,就是不知道过程)
好像有两种答案 展开
好像有两种答案 展开
2个回答
展开全部
三角形ABC是不是直角三角形??是的话,此题很容易解答的 设A(-a,0) B(b,0) C(b,c) P(0,p) 由直线方程的一般通式y=kx+b ,将A、C坐标代入,求出k、b,得出过AC的直线方程 点(X0,Y0)到直线 y=kx+b的距离为 |kx0-y0+b|/√(k^2+1) 此题中P点坐标代入,就是|-p+b|/√(k^2+1) 剩下的不用我教你了吧?求出的答案应该是两个,正负半轴各一个……因为,做出ABC的外接圆,此圆与Y轴负半轴的交点就是P点的一个解 而过Y轴正半轴的交点与A、C组成的三角形的面积范围应该是(0,正无穷) 所以,必有P点存在
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询