已知ABC是锐角三角形ABC的三个内角,A,B,C的对边分别为a,b,c

已知A,B,C是锐角三角形ABC的三个内角,A,B,C的对边分别为a,b,c,若cos(A-C)-cos(A+C)=3/2,且b的2次方=ac,求角B的值,若B=根号3,... 已知A,B,C是锐角三角形ABC的三个内角,A,B,C的对边分别为a,b,c,若cos(A-C)-cos(A+C)=3/2,且b的2次方=ac,求角B的值,若B=根号3,求三角形ABC的周长 展开
 我来答
yuyou403
推荐于2016-12-01 · TA获得超过6.4万个赞
知道顶级答主
回答量:2.2万
采纳率:95%
帮助的人:1亿
展开全部
答:
(1)
cos(A-C)-cos(A+C)=3/2
2sinAsinC=3/2
sinAsinC=3/4
因为:b^2=ac,所以:a/b=b/c
根据正弦定理:a/sinA=b/sinB=c/sinC
所以:a/b=sinA/sinB=b/c=sinB/sinC
(sinB)^2=sinAsinC=3/4
sinB=√3/2
B=60°或者B=120°(不符合锐角三角形需舍去)
因为三角形ABC是锐角三角形,所以B=60°

(2)
sinAsinC
=sinAsin(180°-60°-A)
=sinA(sin120°cosA-cos120°sinA)
=√3sinAcosA/2+sinAsinA/2=3/4
所以:√3sin2A-cos2A=2
结合:(sin2A)^2+(cos2A)^2=1解得:
sin2A=√3/2,cos2A=-1/2
2A=120°,A=60°
结合(1)知道:A=B=C=60°
所以a=b=c=√3
周长为3√3
ssbin_123
2013-04-23
知道答主
回答量:26
采纳率:0%
帮助的人:13.3万
展开全部
∠A+∠B+∠C=π
∠B=π-(∠A+∠C)
∴COSB=COS[π-(∠A+∠C)]=-COS(A+C)
原式=COS(A-C)-COS(A+C)=3/2
根据两角和与差的正余弦公式,得:
cosAcosC+sinAsinc-cosAcosC+sinAsinC=2sinAsinC=3/2
即sinAsinc=3/4
根据正弦定理。a/sinA=b/sinB=c/sinC 及b^2=ac
∴sin²B=sinAsinC=3/4
∴sinB=(√3)/2
又因为∠B不是钝角
即∠B=60°
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式