一个自然数除以2.3.4.5,结果都余1,这样的数有( )个,最小的数是( )
6个回答
展开全部
了好久的书才来做这个题,中国古代有一种算法叫做“大衍求一术”,简单点儿解释就是:求一个数N,使得它被A1除余r1,被A2除余r2,被A3除余r3,被A4除余r4……。写成代数式就是:N=A1q1+r1=A2q2+r2=A3q3+r3=A4q4+r4=……那么“大衍求一术”要求我们首先找到一个数M1,它除以A1余1,而同时又被B1=A2×A3×A4整除;再找一个数M2,它除以A2余1,而同时又被B2=A1×A3×A4整除;再找一个数M3,它除以A3余1,而同时又被B3=A1×A2×A4整除;再找一个数M4,它除以A4余1,而同时又被B4=A1×A2×A3整除;如此等等。以上一系列“求一”的过程,相当于解一系列不定方程:BiX+AiY=1,(i=1,2,3,4……)。那么,当A1,A2,A3,A4互质的时候,利用辗转相除法,可以求得上面不定方程的解Xi(i=1,2,3,4……)。于是,若令Mi=BiXi,那么M1r1+M2r2+M3r3+M4r4就是一个被A1除余r1,被A2除余r2,被A3除余r3,被A4除余r4的数,它加上或减去A1×A2×A3×A4依然具有同样性质。
现在利用上述性质做这道题:
先求被11除余1且被13×17×19=4199整除的数。用辗转相除法:4199-11×381=8;11-8=3;8-3×2=2;3-2=1;所以1=3-2=3-(8-3×2)=3×3-8=(11-8)×3-8=11×3-8×4=11×3-(4199-11×381)×4=-4199×4+11×1527,所以求得M1=-4199×4=-16796。用同样方法,还可求得M2=-10659,M3=-16302,M4=-2431。题中r1=5,r2=6,r3=8,r4=9,从而M1r1+M2r2+M3r3+M4r4=-300229,注意到11×13×17×19=46189,所以被11除余5,被13除余6,被17除余8,被19除余9的最小自然数是-300229+46189×7=23094。
如果楼主不明白什么是辗转相除法,自己去找点资料看看吧,很容易理解的。
终于做完了,打了好久字的说,呵呵,打完收工!
现在利用上述性质做这道题:
先求被11除余1且被13×17×19=4199整除的数。用辗转相除法:4199-11×381=8;11-8=3;8-3×2=2;3-2=1;所以1=3-2=3-(8-3×2)=3×3-8=(11-8)×3-8=11×3-8×4=11×3-(4199-11×381)×4=-4199×4+11×1527,所以求得M1=-4199×4=-16796。用同样方法,还可求得M2=-10659,M3=-16302,M4=-2431。题中r1=5,r2=6,r3=8,r4=9,从而M1r1+M2r2+M3r3+M4r4=-300229,注意到11×13×17×19=46189,所以被11除余5,被13除余6,被17除余8,被19除余9的最小自然数是-300229+46189×7=23094。
如果楼主不明白什么是辗转相除法,自己去找点资料看看吧,很容易理解的。
终于做完了,打了好久字的说,呵呵,打完收工!
展开全部
一个自然数除以2.3.4.5,结果都余1,这样的数有( 无数)个,最小的数是( 61)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一个自然数除以2.3.4.5.结果都余1,这个数是2、3、4、5的公倍数+1
为:4*3*5=60+1
有无数个
最小是61
为:4*3*5=60+1
有无数个
最小是61
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
无数个,最小的是*3*4*5+1=121
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询