在数学中,N、Z、Q、R 分别代表什么呢?
N全体非负整数(或自然数)组成的集合;R是实数集;Z是整数集;Q是有理数集;Z*是正整数集;N*是正整数集。
集合及运算的概念
集合:一般的,一定范围内某些确定的,不同的对象的全体构成一个集合。
子集:对于两个集合A和B,如果集合A中的任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A是集合B的子集,记作A⊆B读作A包含于B。
空集:不含任何元素的集合叫做空集。记为Φ。
集合的三要素:确定性、互异性、无序性。
集合的表示方法:列举法、描述法、视图法、区间法。
集合的分类:(按集合中元素个数多少分为:)有限集、无限集、空集。
扩展资料:
集合的运算性质
1、A∩B=B∩A;A∩B⊆A;A∩B⊆B;A∩U=A;A∩A=A;A∩φ=φ。
2、A∪B=BUA; A⊆A∪B; B⊆A∪B;A∪U=U;A∪A=A;A∪φ=A 。
3、Cu(CuA)=A;Cuφ=U;CuU=φ;A∩CuA=φ;A∪CuA=U (摩根定律或反演律)。
4、A⊇B,B⊇A,则A=B,A⊇B,B⊇C,则A⊇C。
常用结论
1、A⊆B<=>A∩B=A;A⊆B<=>A∪B=B; A∪B=A∩B<=>A=B。
2、CuA∩CuB=Cu(A∪B),CuA∪CuB=Cu(A∩B)——德摩根律。
参考资料:百度百科—高一数学
2020-07-03 广告
N、Z、Q、R 这些大写字母,在数学中表示的是集合:
R代表实数集:包含所有有理数和无理数的集合就是实数集
Z代表整数集:由全体整数组成的集合叫整数集。它包括全体正整数、全体负整数和零
N代表非负整数集:全体非负整数的集合通常称非负整数集(或自然数集)。非负整数集包含0、1、2、3等自然数。非负整数集包括正整数和零。非负整数集是一个可列集。
Q代表有理数集:即由所有有理数所构成的集合,有理数集是实数集的子集
2013-04-24
N表示集合中的自然数集
Q表示有理数集
R表示实数集
N+表示正整数集
2021-01-25