在△ABC中,角A、B、C所对边分别为a、b、c,证明:(a^2-b^2)/c^2=sin(A-B)/sinC
在△ABC中,角A、B、C所对边分别为a、b、c,证明:(a^2-b^2)/c^2=sin(A-B)/sinC急急急请速解详细点!高中知识...
在△ABC中,角A、B、C所对边分别为a、b、c,证明:(a^2-b^2)/c^2=sin(A-B)/sinC 急急急 请速解 详细点! 高中知识
展开
1个回答
2013-04-24
展开全部
(a^2-b^2)/c^2=(a+b/c)(a-b/c)
根据正弦定理:
(a+b/c)(a-b/c)
=(sinA+sinB/sinC)(sinA-sinB/sinC)
分别处理,用和化为积公式:
sinA+sinB/sinC=2sin(A+B/2)cos(A-B/2)/sin(A+B)
=2sin(A+B/2)cos(A-B/2)/2sin(A+B/2)cos(A+B/2)
=cos(A-B/2)/cos(A+B/2)
同理:a-b/c=sin(A-B/2)/sin(A+B/2)
所以原式=sin(A-B/2)cos(A-B/2)/sin(A+B/2)cos(A+B/2)
=sin(A-B)/sin(A+B)=sin(A-B)/sinC
根据正弦定理:
(a+b/c)(a-b/c)
=(sinA+sinB/sinC)(sinA-sinB/sinC)
分别处理,用和化为积公式:
sinA+sinB/sinC=2sin(A+B/2)cos(A-B/2)/sin(A+B)
=2sin(A+B/2)cos(A-B/2)/2sin(A+B/2)cos(A+B/2)
=cos(A-B/2)/cos(A+B/2)
同理:a-b/c=sin(A-B/2)/sin(A+B/2)
所以原式=sin(A-B/2)cos(A-B/2)/sin(A+B/2)cos(A+B/2)
=sin(A-B)/sin(A+B)=sin(A-B)/sinC
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询