
外文参考文献翻译,很急!十分感谢!!!
[1]M.Bohner,Someoscillationcriteriaforfirstorderdelaydynamicequations,FarEastJ.Appl.M...
[1] M. Bohner, Some oscillation criteria for first order delay dynamic equations, Far East J. Appl. Math. 18 (3) (2005) 289-304.
[2] R. P. Agarwal, M. Bohner, S. H. Saker, Oscillation of second order delay dynamic equations, Can. Appl. Math. Q. 13(2005) 1-18.
[3] A. Äozbekler, A. Zafer, Oscillation of solutions of second order mixed nonlinear differential equations under impulsive perturbations, Comput. Math. Appl. 61 (2011) 933-940.
[4] X. X. Liu, Z. T. Xu, Oscillation of a forced super-linear second order differential equation with impulses, Comput. Math. Appl. 53 (2007) 1740-1749.
[5] D. Cakmak, A. Tiryaki, Oscillation criteria for certain forced second order nonlinear differential equations, Appl. Math.Lett. 17 (2004) 275-279.
[6] R. P. Agarwal, S. R. Grace, Oscillation of Certain Third-Order Difference Equations, Comput. Math. Appl. 42 (2001)379-384.
[7] N. Parhi, Oscillation and non-oscillation of solutions of second order difference equations involving generalized difference,Appl. Math. Comput. 218 (2011) 458-468.
[8] L. Erbe, A. Peterson, S. H. Saker, Oscillation criteria for second-order nonlinear delay dynamic equations, J. Math. Anal.Appl. 333 (2007) 505-522.
[9] S. R. Grace, R. P. Agarwal, M. Bohner, D. O'Regan, Oscillation of second-order strongly superlinear and strongly sublinear dynamic equations, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 3463-3471.
[10] S. H. Saker, Oscillation of nonlinear dynamic equations on time scales, Appl. Math. Comput. 148 (2004) 81-91.
[11] B. Karpuz, Unbounded oscillation of higher-order nonlinear delay dynamic equations of neu- tral type with oscillating coeffcients, Electron. J. Qual. Theory Differ. Equ. 34 (2009) 1-14.
[12] Y. B. Sun, Z. Han, Y. Sun, Y. Pan, Oscillation theorems for certain third order nonlinear delay dynamic equations on time scales, Electron. J. Qual. Theory Differ. Equ. 75 (2011) 1-14.
[13] M. Huang, W. Feng, Forced Oscillation of Second Order Nonlinear Dynamic Equations on Time Scales, Electron. J. Qual.Theory Differ. Equ. 36 (2008) 1-13.
[14] D. X. Chen, Oscillation criteria of fractional di®erential equations, Adv. Differ. Equ. 2012:33 (2012) 1-18.
[15] Q. X. Zhang, F. Qiu, Oscillation theorems for second-order half-linear delay dynamic equations with damping on time scales, Comput. Math. Appl. 62 (2011) 4185-4193.
[16] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[17] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science BV, Amsterdam, 2006.
[18] S. Das, Functional Fractional Calculus for System Identi¯cation and Controls. Springer, New York, 2008.
[19] G. H. Hardy, J. E. Littlewood, G. P¶olya, Inequalities, Second edition, Cambridge Univ. Press, Cambridge, UK, 1988.
[20] T. S. Hassan, Oscillation of third order nonlinear delay dynamic equations on time scales, Math. Comput. Modelling 49 展开
[2] R. P. Agarwal, M. Bohner, S. H. Saker, Oscillation of second order delay dynamic equations, Can. Appl. Math. Q. 13(2005) 1-18.
[3] A. Äozbekler, A. Zafer, Oscillation of solutions of second order mixed nonlinear differential equations under impulsive perturbations, Comput. Math. Appl. 61 (2011) 933-940.
[4] X. X. Liu, Z. T. Xu, Oscillation of a forced super-linear second order differential equation with impulses, Comput. Math. Appl. 53 (2007) 1740-1749.
[5] D. Cakmak, A. Tiryaki, Oscillation criteria for certain forced second order nonlinear differential equations, Appl. Math.Lett. 17 (2004) 275-279.
[6] R. P. Agarwal, S. R. Grace, Oscillation of Certain Third-Order Difference Equations, Comput. Math. Appl. 42 (2001)379-384.
[7] N. Parhi, Oscillation and non-oscillation of solutions of second order difference equations involving generalized difference,Appl. Math. Comput. 218 (2011) 458-468.
[8] L. Erbe, A. Peterson, S. H. Saker, Oscillation criteria for second-order nonlinear delay dynamic equations, J. Math. Anal.Appl. 333 (2007) 505-522.
[9] S. R. Grace, R. P. Agarwal, M. Bohner, D. O'Regan, Oscillation of second-order strongly superlinear and strongly sublinear dynamic equations, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 3463-3471.
[10] S. H. Saker, Oscillation of nonlinear dynamic equations on time scales, Appl. Math. Comput. 148 (2004) 81-91.
[11] B. Karpuz, Unbounded oscillation of higher-order nonlinear delay dynamic equations of neu- tral type with oscillating coeffcients, Electron. J. Qual. Theory Differ. Equ. 34 (2009) 1-14.
[12] Y. B. Sun, Z. Han, Y. Sun, Y. Pan, Oscillation theorems for certain third order nonlinear delay dynamic equations on time scales, Electron. J. Qual. Theory Differ. Equ. 75 (2011) 1-14.
[13] M. Huang, W. Feng, Forced Oscillation of Second Order Nonlinear Dynamic Equations on Time Scales, Electron. J. Qual.Theory Differ. Equ. 36 (2008) 1-13.
[14] D. X. Chen, Oscillation criteria of fractional di®erential equations, Adv. Differ. Equ. 2012:33 (2012) 1-18.
[15] Q. X. Zhang, F. Qiu, Oscillation theorems for second-order half-linear delay dynamic equations with damping on time scales, Comput. Math. Appl. 62 (2011) 4185-4193.
[16] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[17] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science BV, Amsterdam, 2006.
[18] S. Das, Functional Fractional Calculus for System Identi¯cation and Controls. Springer, New York, 2008.
[19] G. H. Hardy, J. E. Littlewood, G. P¶olya, Inequalities, Second edition, Cambridge Univ. Press, Cambridge, UK, 1988.
[20] T. S. Hassan, Oscillation of third order nonlinear delay dynamic equations on time scales, Math. Comput. Modelling 49 展开
展开全部
[1]m . Bohner,一些振荡准则一阶时滞动力方程,远东j .达成协议。数学。18(3)(2005)289 - 304。
[2]r·p·阿加瓦尔先生,Bohner,s h .猎隼,振动的二阶时滞动力方程,可以。达成协议。数学。问:13(2005)1 - 18。
[3]a,a Aozbekler Zafer,振荡解的二阶混合非线性微分方程在脉冲扰动,Comput。数学。:。61(2011)933 - 940。
[4]x x,z . t .徐、刘振荡的一个强制用户二阶脉冲微分方程,Comput。数学。达成。53(2007)1740 - 1749。
[5]d,a . Tiryaki Cakmak,振动性准则某些强迫二阶非线性微分方程,达成协议。数学博士。17(2004)275 - 279。
[6]r·p·阿格沃尔,s . r .优雅、振荡的某些三阶差分方程,Comput。数学。达成。42(2001)379 - 384。
[7]n . Parhi、振荡和非振动解的二阶差分方程涉及广义差异,达成协议。数学。Comput。218(2011)458 - 468。
[8]l . Erbe,s·h·a·彼得森,猎隼,振动标准二阶非线性时滞动力方程,j .数学。肛门:。333(2007)505 - 522。
[9]s r .优雅,r . p . m . Bohner Agarwal,,d .奥雷根,振动的二阶强次线性超线性和动态方程,Commun强烈。非线性科学。号码。同时。14(2009)3463 - 3471。
[10]s h .猎隼,振荡的非线性动态方程在时间尺度,达成协议。数学。Comput。148(2004)81 - 91。
[11]b . Karpuz,无界振荡的高阶非线性时滞动力方程,与我校击毙类型、电子coeffcients摆动。j .涉及。理论不同。Equ。34(2009)1 - 14。
[12]y . b .太阳,z .韩寒,y,y太阳锅、振动性定理某些第三阶非线性时滞动力方程在时间尺度、电子。j .涉及。理论不同。Equ。75(2011)1 - 14。
[13],w·冯·m·黄,强迫振动的二阶非线性动态方程在时间尺度、电子。j .涉及理论不同。Equ。36(2008)1 13。
[14]d . x。陈,振荡的标准分数di®为方程,订购不同。装备的。2012:33(2012)1 - 18。
[15]问:x张,f·邱、振动性定理二阶半线性时滞动态方程与阻尼对时间尺度,Comput。数学。:。62(2011)4185 - 4193。
[16]i Podlubny,分数微分方程、学术出版社,圣地亚哥,1999。
[17]a . a . Kilbas,h . m .斯利瓦斯塔瓦,j•j•特鲁希略,理论和应用分数微分方程,爱思唯尔科学BV,阿姆斯特丹,2006。
[18]s Das、功能分数阶微积分为系统识别和控制¯阳离子。施普林格,纽约,2008年。
[19]g·h·哈迪,j·e·利特尔伍德,g . P¶olya,不等式,第二版,剑桥大学出版社,1988年,英国剑桥。
[20]t . s .哈桑,振荡三阶非线性时滞动力方程在时间尺度、数学。Comput。造型49
[2]r·p·阿加瓦尔先生,Bohner,s h .猎隼,振动的二阶时滞动力方程,可以。达成协议。数学。问:13(2005)1 - 18。
[3]a,a Aozbekler Zafer,振荡解的二阶混合非线性微分方程在脉冲扰动,Comput。数学。:。61(2011)933 - 940。
[4]x x,z . t .徐、刘振荡的一个强制用户二阶脉冲微分方程,Comput。数学。达成。53(2007)1740 - 1749。
[5]d,a . Tiryaki Cakmak,振动性准则某些强迫二阶非线性微分方程,达成协议。数学博士。17(2004)275 - 279。
[6]r·p·阿格沃尔,s . r .优雅、振荡的某些三阶差分方程,Comput。数学。达成。42(2001)379 - 384。
[7]n . Parhi、振荡和非振动解的二阶差分方程涉及广义差异,达成协议。数学。Comput。218(2011)458 - 468。
[8]l . Erbe,s·h·a·彼得森,猎隼,振动标准二阶非线性时滞动力方程,j .数学。肛门:。333(2007)505 - 522。
[9]s r .优雅,r . p . m . Bohner Agarwal,,d .奥雷根,振动的二阶强次线性超线性和动态方程,Commun强烈。非线性科学。号码。同时。14(2009)3463 - 3471。
[10]s h .猎隼,振荡的非线性动态方程在时间尺度,达成协议。数学。Comput。148(2004)81 - 91。
[11]b . Karpuz,无界振荡的高阶非线性时滞动力方程,与我校击毙类型、电子coeffcients摆动。j .涉及。理论不同。Equ。34(2009)1 - 14。
[12]y . b .太阳,z .韩寒,y,y太阳锅、振动性定理某些第三阶非线性时滞动力方程在时间尺度、电子。j .涉及。理论不同。Equ。75(2011)1 - 14。
[13],w·冯·m·黄,强迫振动的二阶非线性动态方程在时间尺度、电子。j .涉及理论不同。Equ。36(2008)1 13。
[14]d . x。陈,振荡的标准分数di®为方程,订购不同。装备的。2012:33(2012)1 - 18。
[15]问:x张,f·邱、振动性定理二阶半线性时滞动态方程与阻尼对时间尺度,Comput。数学。:。62(2011)4185 - 4193。
[16]i Podlubny,分数微分方程、学术出版社,圣地亚哥,1999。
[17]a . a . Kilbas,h . m .斯利瓦斯塔瓦,j•j•特鲁希略,理论和应用分数微分方程,爱思唯尔科学BV,阿姆斯特丹,2006。
[18]s Das、功能分数阶微积分为系统识别和控制¯阳离子。施普林格,纽约,2008年。
[19]g·h·哈迪,j·e·利特尔伍德,g . P¶olya,不等式,第二版,剑桥大学出版社,1988年,英国剑桥。
[20]t . s .哈桑,振荡三阶非线性时滞动力方程在时间尺度、数学。Comput。造型49
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询