勾股定理证明方法带图

怎样用四个全等的直角三角形证明勾股定理,越多越好... 怎样用四个全等的直角三角形证明勾股定理,越多越好 展开
 我来答
匿名用户
推荐于2016-06-23
展开全部
这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(Elisha Scott Loomis)的 Pythagorean Proposition( 《毕达哥拉斯命题》)一书中总共提到367种证明方式。
  有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。 【证法1】(梅文鼎证明)
   作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.
  ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,
  ∴ ∠EGF = ∠BED,
  ∵ ∠EGF + ∠GEF = 90°,
  ∴ ∠BED + ∠GEF = 90°,
  ∴ ∠BEG =180°―90°= 90°
  又∵ AB = BE = EG = GA = c,
  ∴ ABEG是一个边长为c的正方形.
  ∴ ∠ABC + ∠CBE = 90°
  ∵ RtΔABC ≌ RtΔEBD,
  ∴ ∠ABC = ∠EBD.
  ∴ ∠EBD + ∠CBE = 90°
  即 ∠CBD= 90°
  又∵ ∠BDE = 90°,∠BCP = 90°,
  BC = BD = a.
  ∴ BDPC是一个边长为a的正方形.
  同理,HPFG是一个边长为b的正方形.
  设多边形GHCBE的面积为S,则
  ,
  ∴ BDPC的面积也为S,HPFG的面积也为S由此可推出:a^2+b^2=c^2
   【证法2】(项明达证明)
   作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.
  过点Q作QP∥BC,交AC于点P.
  过点B作BM⊥PQ,垂足为M;再过点
  F作FN⊥PQ,垂足为N.
  ∵ ∠BCA = 90°,QP∥BC,
  ∴ ∠MPC = 90°,
  ∵ BM⊥PQ,
  ∴ ∠BMP = 90°,
  ∴ BCPM是一个矩形,即∠MBC = 90°.
  ∵ ∠QBM + ∠MBA = ∠QBA = °,
  ∠ABC + ∠MBA = ∠MBC = 90°,
  ∴ ∠QBM = ∠ABC,
  又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,
  ∴ RtΔBMQ ≌ RtΔBCA.
  同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2 【证法3】(赵浩杰证明)
   作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形.
  分别以CF,AE为边长做正方形FCJI和AEIG,
  ∵EF=DF-DE=b-a,EI=b,
  ∴FI=a,
  ∴G,I,J在同一直线上,
  ∵CJ=CF=a,CB=CD=c,
  ∠CJB = ∠CFD = 90°,
  ∴RtΔCJB ≌ RtΔCFD ,
  同理,RtΔABG ≌ RtΔADE,
  ∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE
  ∴∠ABG = ∠BCJ,
  ∵∠BCJ +∠CBJ= 90°,
  ∴∠ABG +∠CBJ= 90°,
  ∵∠ABC= 90°,
  ∴G,B,I,J在同一直线上,
  所以a^2+b^2=c^2 【证法4】(欧几里得证明)
   作三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结
  BF、CD. 过C作CL⊥DE,
  交AB于点M,交DE于点L.
  ∵ AF = AC,AB = AD,
  ∠FAB = ∠GAD,
  ∴ ΔFAB ≌ ΔGAD,
  ∵ ΔFAB的面积等于,
  ΔGAD的面积等于矩形ADLM
  的面积的一半,
  ∴ 矩形ADLM的面积 =.
  同理可证,矩形MLEB的面积 =.
  ∵ 正方形ADEB的面积
  = 矩形ADLM的面积 + 矩形MLEB的面积
  ∴ 即a的平方+b的平方=c的平方 【证法5】欧几里得的证法
   《几何原本》中的证明
  在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
  在正式的证明中,我们需要四个辅助定理如下:
  如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。 任意一个正方形的面积等于其二边长的乘积。 任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。
  其证明如下:
  设△ABC为一直角三角形,其直角为CAB。 其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。 画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。 分别连接CF、AD,形成两个三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。 ∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。 因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。 因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。 因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。 因此四边形 BDLK 必须有相同的面积 BAGF = AB^2。 同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC^2。 把这两个结果相加, AB^2+ AC^2; = BD×BK + KL×KC 由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB^2 + AC^2= BC^2。 此证明是于欧几里得《几何原本》一书第1.47节所提出的
匡扶正义QQ
2020-01-20
知道答主
回答量:16
采纳率:0%
帮助的人:5422
展开全部
四块全等直角三角形,用勾股定理魏德武证法,可以说其证法是所有勾股定理证法中最简捷、最实用的首选方法,学者一看就懂,一学就会。将四块全等直角三角形三条边长分别为a、b、c,组成二块长方形面积(ab+ad=2ab),再将二块长方形面积分开,从新组成一块边长为c的正方形,通过形变将原有的四块全等直角三角形面积转换成c^2-(b-a)^2进行计算,。根据前后面积不变的原理构筑一对恒等式2ab=c^2-(b-a)^2化简后得c^2=a^2+b^2。这样既不要割补也不需求证,,就可轻而易举地导出直角三角形三边的内在关系。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
还敢心动嘛Ds
高粉答主

2020-03-02 · 关注我不会让你失望
知道答主
回答量:8.5万
采纳率:1%
帮助的人:4540万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式