∫∫∫(G)(x^2+y^2)dv,其中G为旋转抛物面z=1/2(x^2+y^2)与平面z=3所围成求三重积分

∫∫∫(G)(x^2+y^2)dv,其中G为旋转抛物面z=1/2(x^2+y^2)与平面z=3所围成求三重积分详细过程... ∫∫∫(G)(x^2+y^2)dv,其中G为旋转抛物面z=1/2(x^2+y^2)与平面z=3所围成求三重积分 详细过程 展开
 我来答
fin3574
高粉答主

2013-04-26 · 你好啊,我是fin3574,請多多指教
fin3574
采纳数:21378 获赞数:134599

向TA提问 私信TA
展开全部
{ z = 3、在上方
{ 2z = x² + y²、在下方
柱坐标(投影法):2z = x² + y² --> 2z = r²、x² + y² = 2(3) = 6 --> r² = 6 --> 0 ≤ r ≤ √6
∫∫∫(G) (x² + y²) dV
= ∫∫(Dxy) dxdy ∫(r²/2~3) r² dz
= ∫(0~2π) dθ ∫(0~√6) r dr ∫(r²/2~3) r² dz
= 2π • ∫(0~√6) r³ • (3 - r²/2) dr
= π • ∫(0~√6) (6r³ - r⁵) dr
= π • [ (6/4)r⁴ - (1/6)r⁶ ] |(0~√6)
= π • [ (3/2)(√6)⁴ - (1/6)(√6)⁶ ]
= 18π
柱坐标(切片法):x² + y² = 2z --> x² + y² = (√2√z)² --> 0 ≤ r ≤ √(2z)
∫∫∫(G) (x² + y²) dV
= ∫(0~3) dz ∫∫(Dz) (x² + y²) dxdy
= ∫(0~3) dz ∫(0~2π) dθ ∫(0~√(2z)) r² • r dr
= ∫(0~3) dz • 2π • (1/4)[ r⁴ ] |(0~√(2z))
= (π/2)∫(0~3) 4z² dz
= 2π • (1/3)[ z³ ] |(0~3)
= 2π • (1/3)(27)
= 18π
nsjiang1
2013-04-26 · TA获得超过1.3万个赞
知道大有可为答主
回答量:8735
采纳率:94%
帮助的人:3774万
展开全部
用柱面坐标:
∫∫∫(G)(x^2+y^2)dv
=∫∫∫r^3dv
=∫(0, π/2)dθ∫(0,√6)rdr∫(0,r^2/2)r^2dz
=π/2∫(0,√6)r^5/2dr
=(π/4)(√6)^6
=27π
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式