2个回答
展开全部
1
f(x)=2x3-3(a-1)x2+1
f'(x)=6x^2-6(a-1)x=6x[x-(a-1)]
f'(x)=0==>x1=0,x2=a-1
a=1,f'(x)=6x^2≥0,总成立
f(x)单调增区间(-∞,+∞)
a>1,
f(x)单调增区间(-∞,0),(a-1,+∞)
f(x)单调减区间(0,a-1)
2
a=1,f(x)无极值
a>1,由(1)可知
f(x)极大值为f(0)=1
f(x)极小值为f(a-1)=2(a-1)^3-3(a-1)^3+1=1-(a-1)^3
f(x)=2x3-3(a-1)x2+1
f'(x)=6x^2-6(a-1)x=6x[x-(a-1)]
f'(x)=0==>x1=0,x2=a-1
a=1,f'(x)=6x^2≥0,总成立
f(x)单调增区间(-∞,+∞)
a>1,
f(x)单调增区间(-∞,0),(a-1,+∞)
f(x)单调减区间(0,a-1)
2
a=1,f(x)无极值
a>1,由(1)可知
f(x)极大值为f(0)=1
f(x)极小值为f(a-1)=2(a-1)^3-3(a-1)^3+1=1-(a-1)^3
展开全部
1
f(x)=2x3-3(a-1)x2+1
f'(x)=6x^2-6(a-1)x=6x[x-(a-1)]
f'(x)=0==>x1=0,x2=a-1
a=1,f'(x)=6x^2≥0,总成立
f(x)单调增区间(-∞,+∞)
a>1,
f(x)单调增区间(-∞,0),(a-1,+∞)
f(x)单调减区间(0,a-1)
2
a=1,f(x)无极值
a>1,由(1)可知
f(x)极大值为f(0)=1
f(x)极小值为f(a-1)=2(a-1)^3-3(a-1)^3+1=1-(a-1)^3
采纳我哦
f(x)=2x3-3(a-1)x2+1
f'(x)=6x^2-6(a-1)x=6x[x-(a-1)]
f'(x)=0==>x1=0,x2=a-1
a=1,f'(x)=6x^2≥0,总成立
f(x)单调增区间(-∞,+∞)
a>1,
f(x)单调增区间(-∞,0),(a-1,+∞)
f(x)单调减区间(0,a-1)
2
a=1,f(x)无极值
a>1,由(1)可知
f(x)极大值为f(0)=1
f(x)极小值为f(a-1)=2(a-1)^3-3(a-1)^3+1=1-(a-1)^3
采纳我哦
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询