已知abc为不全相等的正数,求证:(a+b—c)/a+(c+a—b)/b+(a+b—c)/c>3
1个回答
2013-04-26
展开全部
证明:
(b+c-a)/a+(c+a+b)/b+(a+b+c)/c
=(b+c)/a+(a+c)/b+(a+b)/c+1
=[bc(b+c)+ac(a+c)+ab(a+b)]/abc+1
=(b�0�5c+bc�0�5+a�0�5c+ac�0�5+a�0�5b+ab�0�5)/abc+1
=[a(b�0�5+c�0�5)+b(a�0�5+c�0�5)+c(a�0�5+b�0�5)]/abc+1
≥a*2bc/abc+1(此时b=c)或b*2ac/abc(此时a=c)或c*2ab/abc(此时a=b)
≥3
(b+c-a)/a+(c+a+b)/b+(a+b+c)/c
=(b+c)/a+(a+c)/b+(a+b)/c+1
=[bc(b+c)+ac(a+c)+ab(a+b)]/abc+1
=(b�0�5c+bc�0�5+a�0�5c+ac�0�5+a�0�5b+ab�0�5)/abc+1
=[a(b�0�5+c�0�5)+b(a�0�5+c�0�5)+c(a�0�5+b�0�5)]/abc+1
≥a*2bc/abc+1(此时b=c)或b*2ac/abc(此时a=c)或c*2ab/abc(此时a=b)
≥3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询