证明可逆矩阵,求矩阵
1个回答
展开全部
2B^(-1)A=A-4E
2A=AB-4B
AB-2A-4B=0
(A-4E)(B-2E)=AB-2A-4B+8E=8E
故(B-2E)^(-1)=(1/8)(A-4E)
第二问不想算了,简单思路
(B-2E)^(-1)=(1/8)(A-4E)
那么B=8(A-4E)^(-1)+2E
因为A-4E是对角分块,本题很容易算。
2A=AB-4B
AB-2A-4B=0
(A-4E)(B-2E)=AB-2A-4B+8E=8E
故(B-2E)^(-1)=(1/8)(A-4E)
第二问不想算了,简单思路
(B-2E)^(-1)=(1/8)(A-4E)
那么B=8(A-4E)^(-1)+2E
因为A-4E是对角分块,本题很容易算。
追问
不好意思,第二个问我还是没看懂
追答
(A-4E)=
-3 -2 0
1 -2 0
0 0 -2
这是一个对角分块矩阵(如果不清楚,查阅任何一本线性代数数,分块矩阵一节)
故(A-4E)^(-1)=(1/8)
-2 2 0
-1 -3 0
0 0 -4
注意到(B-2E)^(-1)=(1/8)(A-4E)
故B-2E=[(1/8)(A-4E)]^(-1)=8(A-2E)^(-1)
故B=8(A-4E)^(-1)+2E=
0 2 0
-1 -1 0
0 0 -2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询