已知函数f(x)=2sin(x-兀/6)cosx+2cos^2x。求(1)f(x)的单调递增区间(2
已知函数f(x)=2sin(x-兀/6)cosx+2cos^2x。求(1)f(x)的单调递增区间(2)设兀/4<a<兀/2,且f(a)=13/10,求sin2a的值...
已知函数f(x)=2sin(x-兀/6)cosx+2cos^2x。求(1)f(x)的单调递增区间(2)设兀/4<a<兀/2,且f(a)=13/10,求sin2a的值
展开
展开全部
(1)f(x)=2sin(x-π/6)cosx+2cos^2x=(√3sinx-cosx)cosx+2cosxcosx
=(√3sinx+cosx)cosx=√3/2sin2x+1/2cos2x+1/2
=sin(2x+π/6)+1/2
令2kπ-π/2<=2x+π/6<=2kπ+π/2 (k是整数)
得到kπ-π/3<=x<=kπ+π/6 (k是整数)
所以f(x)的单调递增区间是[kπ-π/3,kπ+π/6] (k是整数)
(2)π/4<a<π/2 故2a属于(π/2,π)
f(a)=3/10 所以sin(2a+π/6)+1/2=13/10
得到sin(2a+π/6)=4/5
故cos(2a+π/6)=-3/5
所以sin2a=sin(2a+π/6-π/6)=sin(2a+π/6)cosπ/6-cos(2a+π/6)sinπ/6
=4/5*√3/2+3/5*1/2=(4√3+3)/10
=(√3sinx+cosx)cosx=√3/2sin2x+1/2cos2x+1/2
=sin(2x+π/6)+1/2
令2kπ-π/2<=2x+π/6<=2kπ+π/2 (k是整数)
得到kπ-π/3<=x<=kπ+π/6 (k是整数)
所以f(x)的单调递增区间是[kπ-π/3,kπ+π/6] (k是整数)
(2)π/4<a<π/2 故2a属于(π/2,π)
f(a)=3/10 所以sin(2a+π/6)+1/2=13/10
得到sin(2a+π/6)=4/5
故cos(2a+π/6)=-3/5
所以sin2a=sin(2a+π/6-π/6)=sin(2a+π/6)cosπ/6-cos(2a+π/6)sinπ/6
=4/5*√3/2+3/5*1/2=(4√3+3)/10
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询