正方形ABCD,一直角三角板的直角顶点放在正方形对角线BD上的一点E上,将此三角板绕点E旋转时,两边 120
正方形ABCD,一直角三角板的直角顶点放在正方形对角线BD上的一点E上,将此三角板绕点E旋转时,两边分别交于直线AB,CD于M,N当M分别在边上AB,CD上时,求证:BM...
正方形ABCD,一直角三角板的直角顶点放在正方形对角线BD上的一点E上,将此三角板绕点E旋转时,两边分别交于直线AB,CD于M,N 当M分别在边上AB,CD上时,求证:BM-BN=√2BE 当M在AB上,N在CD的延长线上,求证:BM-BN=√2BE 当M在AB的延长线上,N在BC上时,求证:BN-BM=√2BE M,N。
展开
2个回答
展开全部
(2)
证明:
过E点作BC的垂线交BC于G,则BG=EG=(√2/2)*BE
MN^2=BM^2+BN^2=ME^2+NE^2
NE^2=EG^2+NG^2
=EG^2+(BN+EG)^2
=[(√2/2)*BE]^2+[BN+(√2/2)*BE]^2
=BE^2/2+BN^2+√2*BN*BE+BE^2/2
=BE^2+BN^2+√2*BN*BE
ME^2=BE^2+BM^2-2BE*BMcos45度
=BE^2+BM^2-√2*BM*BE
ME^2+NE^2
=BE^2+BM^2-√2*BM*BE+BE^2+BN^2+√2*BN*BE
=2BE^2+BM^2+BN^2-√2*BM*BE+√2*BN*BE
=2BE^2+BM^2+BN^2-√2*BE(BM-BN)
=BM^2+BN^2
所以
2BE^2-√2*BE(BM-BN)=0
√2(BM-BN)=2BE
BM-BN=√2*BE
证毕
证明:
过E点作BC的垂线交BC于G,则BG=EG=(√2/2)*BE
MN^2=BM^2+BN^2=ME^2+NE^2
NE^2=EG^2+NG^2
=EG^2+(BN+EG)^2
=[(√2/2)*BE]^2+[BN+(√2/2)*BE]^2
=BE^2/2+BN^2+√2*BN*BE+BE^2/2
=BE^2+BN^2+√2*BN*BE
ME^2=BE^2+BM^2-2BE*BMcos45度
=BE^2+BM^2-√2*BM*BE
ME^2+NE^2
=BE^2+BM^2-√2*BM*BE+BE^2+BN^2+√2*BN*BE
=2BE^2+BM^2+BN^2-√2*BM*BE+√2*BN*BE
=2BE^2+BM^2+BN^2-√2*BE(BM-BN)
=BM^2+BN^2
所以
2BE^2-√2*BE(BM-BN)=0
√2(BM-BN)=2BE
BM-BN=√2*BE
证毕
追问
这是第几题的步骤啊
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询