
如何用双四选一数据结构选择器74LS153实现全加器
根据全加器真值表,可写出和S,高位进位CO的逻辑函数。
A1A0作为两个输入变量,即加数和被加数A、B,D0~D3为第三个输入变量,即低位进位CI,1Y为全加器的和S,2Y全加器的高位进位CO,则可令数据选择器的输入为
A1=A,A0=B,1DO=1D3=CI,1D1=1D2=CI反,2D0=0,2D3=1,2D1=2D2=CI,1Q=S1,2Q=CO;
可以根据管脚所对应的连接电路
扩展资料:
工作原理是:给A1A0一组信号 比如1 0 那么就相当于给了他一个2进制数字2 也就相当于选通了D2这个输入端,这个时候 输出Y 输出的就是D2的信号;D2是什么,Y就输出什么
输出表如下:
控制 选择的输出源
A1 A0 Y
0 0 D0
0 1 D1
1 0 D2
1 1 D3
数据选择器(MUX)的逻辑功能是在地址选择信号的控制下,从多路数据中选择一路数据作为输出信号
4选1原理图
如图1所示的是四选一数据选择器的原理图。图1中的D0、D1、D2、D3是四个数据输入端,Y为输出端,A1、A0是地址输入端。从表中可见,利用指定A1A0的代码,能够从D0、D1、D2、D3这四个输入数据中选出任何一个并送到输出端。因此,用数据选择器可以实现数据的多路分时传送。
此外,数据选择器还广泛用于产生任意一种组合逻辑函数。在图示电路中,若将Y看成是A0、A1及D0、D1、D2、D3的函数,则可写成
如果把A1、A0视为两个输入逻辑变量,同时把D0、D1、D2和D3取为第三个输入逻辑变量A2的不同状态(即A2、/A2、1或0),便可产生所需要的任何一种三变量A2、A1、A0的组合逻辑函数。
可见,利用具有n位地址输入的数据选择器可以产生任何一种输入变量数不大于n +1的组合逻辑函数
参考资料来源:百度百科-数据选择器
用 74LS153 设计一个一位全加器。
------------------
1. 根据全加器的功能要求,写出真值表。
全加器功能: C_S = X + Y + Z。
真值表,放在插图中了。
(用数据选择器设计时,卡诺图、化简、逻辑表达式,都是不需要的。)
2. 选定输入输出接口端。
A、B,连接两个输入变量 Y、Z;
D0~D3,用于连接输入变量 X;
1Y,作为和的输出端 S;
2Y,作为进位的输出 C。
3. 分析真值表,确定各数据端的输入。
S:
YZ=00 时,S 等于 X,所以,应把 X 接到 1X0;
YZ=01 时,S 等于 /X,所以,应把 /X 接到 1X1;
YZ=10 时,S 等于 /X,所以,应把 /X 接到 1X2;
YZ=11 时,S 等于 X,所以,应把 X 接到 1X3。
C:
YZ=00 时,C 等于 0;
YZ=01 时,C 等于 X;
YZ=10 时,C 等于 X;
YZ=11 时,C 等于 1。
4. 画出逻辑图。
根据前面的分析,除了 74LS153,还需要一个非门。
用 153 设计电路,在分析各个输入端是什么信号时,只需使用真值表。
因为不是用逻辑门设计电路,所以,卡诺图、逻辑表达式,都是不需要的。
有人,列出了“全加器的逻辑表达式”,明显是冒充内行。
2013-04-27
A1A0作为两个输入变量,即加数和被加数A、B,D0~D3为第三个输入变量,即低位进位CI,1Y为全加器的和S,2Y全加器的高位进位CO,则可令数据选择器的输入为:A1=A,A0=B,1DO=1D3=CI,1D1=1D2=CI反,2D0=0,2D3=1,2D1=2D2=CI,1Q=S1,2Q=CO;
可以根据管脚所对应的连接电路
根据全加器真值表,可写出和S,高位进位CO的逻辑函数。
A1A0作为两个输入变量,即加数和被加数A、B,D0~D3为第三个输入变量,即低位进位CI,1Y为全加器的和S,2Y全加器的高位进位CO,则可令数据选择器的输入为:A1=A,A0=B,1DO=1D3=CI,1D1=1D2=CI反,2D0=0,2D3=1,2D1=2D2=CI,1Q=S1,2Q=CO;
可以根据管脚所对应的连接电路