求通项公式的7种方法,带例题。

我知道的几种方法有迭代法,观察法,逐商法,逐差法==,但不知怎么用... 我知道的几种方法有迭代法,观察法,逐商法,逐差法==,但不知怎么用 展开
 我来答
待記憶荒蕪
推荐于2017-10-08 · TA获得超过9918个赞
知道大有可为答主
回答量:1409
采纳率:84%
帮助的人:263万
展开全部
一、累差法递推式为:an+1=an+f(n)(f(n)可求和)思路::令n=1,2,…,n-1可得a2-a1=f(1)a3-a2=f(2)a4-a3=f(3)……an-an-1=f(n-1)将这个式子累加起来可得an-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴an=a1+f(1)+f(2)+ …+f(n-1)当然我们还要验证当n=1时,a1是否满足上式例1、已知数列{a}中,a1=1,an+1=an+2,求an 令n=1,2,…,n-1可得a2-a1=2a3-a2=22a4-a3=23……an-an-1=2n-1将这个式子累加起来可得an-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴an=a1+f(1)+f(2)+…+f(n-1)当n=1时,a1适合上式故an=2n-1
二、累商法递推式为:an+1=f(n)an(f(n)要可求积)思路:令n=1,2, …,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……an/an-1=f(n-1)将这个式子相乘可得an/a1=f(1)f(2) …f(n-1)∵f(n)可求积∴an=a1f(1)f(2) …f(n-1)当然我们还要验证当n=1时,a1是否适合上式例2、在数列{an}中,a1=2,an+1=(n+1)an/n,求an 令n=1,2, …,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……an/an-1=f(n-1)将这个式子相乘后可得an/a1=2/1×3/24×/3×…×n/(n-1)即an=2n当n=1时,an也适合上式∴an=2n
三,构造法1、递推关系式为an+1=pan+q (p,q为常数)思路:设递推式可化为an+1+x=p(an+x),得an+1=pan+(p-1)x,解得x=q/(p-1)故可将递推式化为an+1+x=p(an+x)构造数列{bn},bn=an+q/(p-1)bn+1=pbn即bn+1/bn=p,{bn}为等比数列.故可求出bn=f(n)再将bn=an+q/(p-1)代入即可得an例3、(06重庆)数列{an}中,对于n>1(n?N)有an=2an-1+3,求an设递推式可化为an+x=2(an-1+x),得an=2an-1+x,解得x=3故可将递推式化为an+3=2(an-1+3)构造数列{bn},bn=an+3bn=2bn-1即bn/bn-1=2,{bn}为等比数列且公比为3bn=bn-1·3,bn=an+3bn=4×3n-1an+3=4×3n-1,an=4×3n-1-12、递推式为an+1=pan+qn(p,q为常数)思路:在an+1=pan+qn两边同时除以qn+1得an+1/qn+1=p/qan/qn+i/q构造数列{bn},bn=an/qn可得bn+1=p/qbn+1/q故可利用上类型的解法得到bn=f(n)再将代入上式即可得an例4、数列{an}中,a1+5/6,an+1=(1/3)an+(1/2)n,求an 在an+1=(1/3)an+(1/2)n两边同时除以(1/2)n+1得2n+1an+1=(2/3)×2nan+1构造数列{bn},bn=2nan可得bn+1=(2/3)bn+1故可利用上类型解法解得bn=3-2×(2/3)n2nan=3-2×(2/3)nan=3×(1/2)n-2×(1/3)n3、递推式为:an+2=pan+1+qan(p,q为常数)思路:设an+2=pan+1+qan变形为an+2-xan+1=y(an+1-xan)也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=p,xy= -q解得x,y,于是{bn}就是公比为y的等比数列(其中bn=an+1-xan)这样就转化为前面讲过的类型了.例5、已知数列{an}中,a1=1,a2=2,an+2=(2/3)·an+1+(1/3)·an,求an设an+2=(2/3)an+1+(1/3)an可以变形为an+2-xan+1=y(an+1-xan)也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=2/3,xy= -1/3可取x=1,y= -1/3构造数列{bn},bn=an+1-an故数列{bn}是公比为-1/3的等比数列即bn=b1(-1/3)n-1b1=a2-a1=2-1=1bn=(-1/3)n-1an+1-an=(-1/3)n-1故我们可以利用上一类型的解法求得an=1+3/4×[1-(-1/3)n-1](n?N*)
四、利用sn和n、an的关系求an1、利用sn和n的关系求an思路:当n=1时,an=sn当n≥2 时, an=sn-sn-1例6、已知数列前项和s=n2+1,求{an}的通项公式.当n=1时,an=sn=2当n≥2 时, an=sn-sn-1=n+1-[(n-1)2+1]=2n-1而n=1时,a1=2不适合上式∴当n=1时,an=2当n≥2 时, an=2n-12、利用sn和an的关系求an思路:利用an=sn-sn-1可以得到递推关系式,这样我们就可以利用前面讲过的方法求解例7、在数列{an}中,已知sn=3+2an,求an即an=sn-sn-1=3+2an-(3+2an-1)an=2an-1∴{an}是以2为公比的等比数列∴an=a1·2n-1= -3×2n-1五、用不完全归纳法猜想,用数学归纳法证明.思路:由已知条件先求出数列前几项,由此归纳猜想出an,再用数学归纳法证明例8、(2002全国高考)已知数列{an}中,an+1=a2n-nan+1,a1=2,求an由已知可a1=2,a2=3,a3=4,a4=5,a5=6由此猜想an=n+1,下用数学归纳法证明:当n=1时,左边=2,右边=2,左边=右边即当n=1时命题成立假设当n=k时,命题成立,即ak=k+1则 ak+1=a2k-kak+1=(k+1)2-k(k+1)+1=k2+2k+1-k2-2k+1=k+2=(k+1)+1∴当n=k+1时,命题也成立.综合(1),(2),对于任意正整数有an=n+1成立即an=n+1
广州中仪测绘
2023-08-25 广告
作为广州中仪测绘科技有限公司的工作人员,我回答如下:使用工程计算器需要遵循一定的步骤和技巧。首先,打开计算器后,根据需要设置计算器的模式,例如科学模式或程序员模式。然后,根据所进行的工程计算需求,输入相应的数值和运算符号。例如,在计算土方量... 点击进入详情页
本回答由广州中仪测绘提供
匿名用户
2013-04-27
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
kkcljj
2015-06-29 · TA获得超过2213个赞
知道小有建树答主
回答量:1562
采纳率:62%
帮助的人:355万
展开全部
应该是〈常见递推数列求通项公式的七种方法〉吧,可参见:
《教育革新》2009年第07期
作者:何发科
百度文库中也有,这儿贴不全,请自查。

一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。

例:在数列{an}中,若a1=1,an 1=an 2(n1),求该数列的通项公式an。

解:由an 1=an 2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。

二、已知数列的前n项和,用公式

S1 (n=1)

Sn-Sn-1 (n2)

例:已知数列{an}的前n项和Sn=n2-9n,第k项满足5

(A) 9 (B) 8 (C) 7 (D) 6

解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8 ∴k=8 选 (B)

此类题在解时要注意考虑n=1的情况。

三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。

例:已知数列{an}的前n项和Sn满足an=SnSn-1(n2),且a1=-,求数列{an}的通项公式。

解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,两边同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-} 是以-为首项,-1为公差的等差数列,∴-= -,Sn= -,

再用(二)的方法:当n2时,an=Sn-Sn-1=-,当n=1时不适合此式,所以,
- (n=1)
- (n2)

四、用累加、累积的方法求通项公式

对于题中给出an与an 1、an-1的递推式子,常用累加、累积的方法求通项公式。

例:设数列{an}是首项为1的正项数列,且满足(n 1)an 12-nan2 an 1an=0,求数列{an}的通项公式
解:∵(n 1)an 12-nan2 an 1an=0,可分解为[(n 1)an 1-nan](an 1 an)=0

又∵{an}是首项为1的正项数列,∴an 1 an ≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,这n-1个式子,将其相乘得:∴ -=-,
又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈N*)

五、用构造数列方法求通项公式
题目中若给出的是递推关系式,而用累加、累积、迭代等又不易求通项公式时,可以考虑通过变形,构造出含有 an(或Sn)的式子,使其成为等比或等差数列,从而求出an(或Sn)与n的关系,这是近一、二年来的高考热点,因此既是重点也是难点。

例:已知数列{an}中,a1=2,an 1=(--1)(an 2),n=1,2,3,……
(1)求{an}通项公式 (2)略

解:由an 1=(--1)(an 2)得到an 1--= (--1)(an--)
∴{an--}是首项为a1--,公比为--1的等比数列。
由a1=2得an--=(--1)n-1(2--) ,于是an=(--1)n-1(2--) -

又例:在数列{an}中,a1=2,an 1=4an-3n 1(n∈N*),证明数列{an-n}是等比数列。

证明:本题即证an 1-(n 1)=q(an-n) (q为非0常数)
由an 1=4an-3n 1,可变形为an 1-(n 1)=4(an-n),又∵a1-1=1,
所以数列{an-n}是首项为1,公比为4的等比数列。
若将此问改为求an的通项公式,则仍可以通过求出{an-n}的通项公式,再转化到an的通项公式上来。

又例:设数列{an}的首项a1∈(0,1),an=-,n=2,3,4……(1)求{an}通项公式。(2)略

解:由an=-,n=2,3,4,……,整理为1-an=--(1-an-1),又1-a1≠0,所以{1-an}是首项为1-a1,公比为--的等比数列,得an=1-(1-a1)(--)n-1
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式