如图,E、F、G、H分别为四边形ABCD的边AB、BC、CD、DA的中点,试判断四边形EFGH的形状,并说明理由。
展开全部
①AC不等于BD,AC不垂直BD,所以四边形EFGH是平行四边形由题意得AC平行EF平行HG,FG平行BD平行HE,GF等于HE等于二分之一BD,HG等于EF等于二分之一AC,所以为平行四边形。②AC等于BD,四边形为菱形。由①得,为平行四边形。又因为AC等于BD所以HE等于EF等于HG等于FG,所以为菱形③AC垂直BD,四边形EFHG是矩形。由①得,为平行四边形。又因为AC垂直BD,所以四边形的四个角均为90度,所以四边形为矩形。④AC等于BDAC垂直BD,四边形EFGH为正方形。把②和③结合,得四个角为90度,四条边相等,所以为正方形。
展开全部
连接BD AC ∵E为AB的中点 H为AD的中点 ∴EH‖等于1/2BD (中位线) ∵F ,G为BC DC的中点 ∴FG‖等于1/2BD ∴EH=FG ∵E ,F为AB BC的中点 ∴EF‖等于1/2AC ∵H,G为AD DC的中点 ∴HG‖等于1/2AC ∴HG=EF 又∵EH=FG ∴四边形EFGH为平行四边形
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
如果你学了中位线定理则:∵E,F为AB,BC中点,∴在△ABC中EF∥且=AC的一半。同理可证HG∥且=AC的一半。所以HG∥且=EF,即四边形EFGH为平行四边形。如还有疑惑,请致函,谢谢!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连接ACB。因为H,G,F,E分别为四边中点,所以线段EF为△ABC的中位线,所以EF平行于AC且等于二分之一AC,同理可得HG平行于AC且等于二分之一AC,所以HG平行且等于EF,所以四边形HEFG为平行四边形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询