用综合法证明,设a>0,b>0且a+b=1则(a+1/a)^2+(b+1/b)^2>=25/2 步骤一定要详细一点……

百度网友a4ee99443
2013-04-28 · TA获得超过494个赞
知道小有建树答主
回答量:388
采纳率:25%
帮助的人:182万
展开全部

应该看得清楚吧。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
快乐欣儿姐
2013-04-28 · TA获得超过1520个赞
知道小有建树答主
回答量:713
采纳率:100%
帮助的人:346万
展开全部
∵a>0、b>0、a+b=1,而a+b≧2√(ab),∴1≧4ab,∴1/2-2ab≧0。
∴(a+1/a)^2+(b+1/b)^2
=[a+(a+b)/a]^2+[b+(a+b)/b]^2
=(1+a+b/a)^2+(1+b+a/b)^2
=1+2(a+b/a)+(a+b/a)^2+1+2(b+a/b)+(b+a/b)^2
=2+2[(a+b/a)+(b+a/b)]+a^2+2b+(b/a)^2+b^2+2a+(a/b)^2
=2+2[(a+b)+(b/a+a/b)]+(a^2+b^2)+2(a+b)+[(a/b)^2+(b/a)^2]
=4+2[1+(b/a+a/b)]+[(a+b)^2-2ab]+[(b/a+a/b)^2-2]
=6+2(b/a+a/b)+(1-2ab)+(b/a+a/b)^2-2
=4+[(b/a+a/b)^2+2(b/a+a/b)+1]-2ab
=7/2+[(b/a+a/b)+1]^2+(1/2-2ab)
≧7/2+[(b/a+a/b)+1]^2。
又(b/a+a/b)≧2,∴[(b/a+a/b)+1]^2≧(2+1)^2=9。
显然,a+b≧2√(ab)、b/a+a/b≧2都在a=b时同时取等号,
∴(a+1/a)^2+(b+1/b)^2≧7/2+9=25/2。
于是,问题得证。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式