已知:在平行四边形ABCD中,E是CD的中点,F是AE的中点,FC与BE相交于G,求证:GF=GC。

ghostljh
2013-04-29 · TA获得超过1461个赞
知道小有建树答主
回答量:340
采纳率:0%
帮助的人:306万
展开全部
证明:

取BE的中点H,连接FH、CH

∵F、G分别是AE、BE的中点

∴FH是△ABE的中位线

∴FH∥AB FH=1/2*AB

∵四边形ABCD是平行四边形

∴CD∥AB CD=AB

∵E是CD的中点

∴CE=1/2*AB

∵CE=1/2*AB FH=1/2*AB

∴CE=FH

∵CE∥AB FH∥AB

∴FH∥CE

∵FH∥CE CE=FH

∴四边形CEFH是平行四边形

∴FG=CG(平行四边形的对角线互相平分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式