如图,先把一矩形ABCD纸片对折,设折痕为MN,再把点B叠在折痕线上,得到△ABE.过点B折纸片,
如图,先把一矩形ABCD纸片对折,设折痕为MN,再把点B叠在折痕线上,得到△ABE.过点B折纸片,使折痕PQ⊥MN于B.(1)求证:△BEP∽△ABQ;(2)求证:BE2...
如图,先把一矩形ABCD纸片对折,设折痕为MN,再把点B叠在折痕线上,得到△ABE.过点B折纸片,使折痕PQ⊥MN于B.(1)求证:△BEP∽△ABQ;(2)求证:BE2=AE•PE;(3)如果沿直线EB折叠纸片,点A是否能叠在直线EC上?
展开
1个回答
展开全部
(1)证明:据题意得:PQ⊥AD,
∵∠PBE+∠ABQ=180°-90°=90°,∠PBE+∠PEB=90°,
∴∠ABQ=∠PEB.
又∵∠BPE=∠AQB=90°,
∴△PBE∽△QAB.
(2)解:△PBE和△BAE相似.
证明:∵△PBE∽△QAB,
∴BE / AB =PE / BQ ∵由折叠可知BQ=PB.
∴BE / AB =PE / PB
即BE / EP =AB / PB
又∵∠ABE=∠BPE=90°,
∴△PBE∽△BAE.
(3)解:点A能叠在直线EC上.
由(2)得,△PBE∽△BAE
∴∠AEB=∠CEB,
∴沿直线EB折叠纸片,点A能叠在直线EC上.
∵∠PBE+∠ABQ=180°-90°=90°,∠PBE+∠PEB=90°,
∴∠ABQ=∠PEB.
又∵∠BPE=∠AQB=90°,
∴△PBE∽△QAB.
(2)解:△PBE和△BAE相似.
证明:∵△PBE∽△QAB,
∴BE / AB =PE / BQ ∵由折叠可知BQ=PB.
∴BE / AB =PE / PB
即BE / EP =AB / PB
又∵∠ABE=∠BPE=90°,
∴△PBE∽△BAE.
(3)解:点A能叠在直线EC上.
由(2)得,△PBE∽△BAE
∴∠AEB=∠CEB,
∴沿直线EB折叠纸片,点A能叠在直线EC上.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询